当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2022-04-25 , DOI: 10.1038/s41565-022-01101-8
Yusen Liang 1 , Zhimin Zhu 1 , Shuqian Qiao 1 , Xin Guo 1 , Rui Pu 1 , Huan Tang 1 , Haichun Liu 2 , Hao Dong 3 , Tingting Peng 1 , Ling-Dong Sun 3 , Jerker Widengren 2 , Qiuqiang Zhan 1, 4
Affiliation  

A photon avalanche (PA) effect that occurs in lanthanide-doped solids gives rise to a giant nonlinear response in the luminescence intensity to the excitation light intensity. As a result, much weaker lasers are needed to evoke such PAs than for other nonlinear optical processes. Photon avalanches are mostly restricted to bulk materials and conventionally rely on sophisticated excitation schemes, specific for each individual system. Here we show a universal strategy, based on a migrating photon avalanche (MPA) mechanism, to generate huge optical nonlinearities from various lanthanide emitters located in multilayer core/shell nanostructrues. The core of the MPA nanoparticle, composed of Yb3+ and Pr3+ ions, activates avalanche looping cycles, where PAs are synchronously achieved for both Yb3+ and Pr3+ ions under 852 nm laser excitation. These nanocrystals exhibit a 26th-order nonlinearity and a clear pumping threshold of 60 kW cm−2. In addition, we demonstrate that the avalanching Yb3+ ions can migrate their optical nonlinear response to other emitters (for example, Ho3+ and Tm3+) located in the outer shell layer, resulting in an even higher-order nonlinearity (up to the 46th for Tm3+) due to further cascading multiplicative effects. Our strategy therefore provides a facile route to achieve giant optical nonlinearity in different emitters. Finally, we also demonstrate applicability of MPA emitters to bioimaging, achieving a lateral resolution of ~62 nm using one low-power 852 nm continuous-wave laser beam.



中文翻译:

在纳米尺度的不同发射器中迁移光子雪崩可实现 46 阶光学非线性

镧系元素掺杂固体中发生的光子雪崩 (PA) 效应导致发光强度对激发光强度的巨大非线性响应。因此,与其他非线性光学过程相比,唤起此类 PA 需要更弱的激光器。光子雪崩主要限于散装材料,并且通常依赖于复杂的激发方案,特定于每个单独的系统。在这里,我们展示了一种通用策略,基于迁移光子雪崩 (MPA) 机制,从位于多层核/壳纳米结构中的各种镧系元素发射体产生巨大的光学非线性。MPA纳米粒子的核心,由Yb 3+和Pr 3+组成离子,激活雪崩循环循环,其中在 852 nm 激光激发下Yb 3+和 Pr 3+离子同步实现 PA 。这些纳米晶体表现出 26 阶非线性和 60 kW cm -2的清晰泵浦阈值。此外,我们证明了雪崩 Yb 3+离子可以将其光学非线性响应迁移到位于外壳层的其他发射器(例如,Ho 3+和 Tm 3+),从而产生更高阶的非线性(向上Tm 3+到 46 日) 由于进一步的级联乘法效应。因此,我们的策略提供了一条在不同发射器中实现巨大光学非线性的简便途径。最后,我们还展示了 MPA 发射器在生物成像中的适用性,使用一根低功率 852 nm 连续波激光束实现了约 62 nm 的横向分辨率。

更新日期:2022-04-26
down
wechat
bug