当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A robust thermoelectric module based on MgAgSb/Mg3(Sb,Bi)2 with a conversion efficiency of 8.5% and a maximum cooling of 72 K
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-04-26 , DOI: 10.1039/d2ee00883a
Pingjun Ying 1 , Lennart Wilkens 1 , Heiko Reith 1 , Nicolas Perez Rodriguez 1 , Xiaochen Hong 1, 2 , Qiongqiong Lu 1 , Christian Hess 1, 2 , Kornelius Nielsch 1, 3, 4 , Ran He 1
Affiliation  

The applications of thermoelectric (TE) technology around room temperature are monopolized by bismuth telluride (Bi2Te3). However, due to the toxicity and scarcity of tellurium (Te), it is vital to develop a next-generation technology to mitigate the potential bottleneck in raw material supply for a sustainable future. Hereby, we develop a Te-free n-type compound Mg3Sb0.6Bi1.4 for near-room-temperature applications. A higher sintering temperature of up to 1073 K is found to be beneficial for reducing the electrical resistivity, but only if Mg is heavily overcompensated in the initial stoichiometry. The optimizations of processing and doping yield a high average zT of 1.1 in between 300 K and 573 K. Together with the p-type MgAgSb, we demonstrate module-level conversion efficiencies of 3% and 8.5% under temperature differences of 75 K and 260 K, respectively, and concomitantly a maximum cooling of 72 K when the module is used as a cooler. Besides, the module displays exceptional thermal robustness with a < 10% loss of the output power after thermal cycling for ∼32 000 times between 323 K and 500 K. These proof-of-principle demonstrations will pave the way for robust, high-performance, and sustainable solid-state power generation and cooling to substitute highly scarce and toxic Bi2Te3.

中文翻译:

基于 MgAgSb/Mg3(Sb,Bi)2 的稳健热电模块,转换效率为 8.5%,最大冷却温度为 72 K

热电(TE)技术在室温附近的应用被碲化铋(Bi 2 Te 3)垄断。然而,由于碲 (Te) 的毒性和稀缺性,开发下一代技术以缓解原材料供应的潜在瓶颈以实现可持续的未来至关重要。因此,我们开发了一种用于近室温应用的无碲 n 型化合物 Mg 3 Sb 0.6 Bi 1.4 。发现高达 1073 K 的较高烧结温度有利于降低电阻率,但前提是 Mg 在初始化学计量中严重过度补偿。工艺和掺杂的优化产生高平均zT在 300 K 和 573 K 之间为 1.1。与 p 型 MgAgSb 一起,我们展示了在 75 K 和 260 K 温差下的模块级转换效率分别为 3% 和 8.5%,同时最大冷却为 72 K 当模块用作冷却器时。此外,该模块显示出出色的热稳定性,在 323 K 和 500 K 之间热循环约 32 000 次后,输出功率损失 < 10%。这些原理验证演示将为稳健、高性能铺平道路,以及可持续的固态发电和冷却以替代高度稀缺和有毒的Bi 2 Te 3
更新日期:2022-04-26
down
wechat
bug