当前位置: X-MOL 学术Eur. Phys. J. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrodynamics of electro-capillarity propelled non-Newtonian droplets through micro-confinements
The European Physical Journal E ( IF 1.8 ) Pub Date : 2022-04-25 , DOI: 10.1140/epje/s10189-022-00196-0
Purbarun Dhar 1 , Arkadeep Paul 2
Affiliation  

Abstract

In this article, we theoretically explore the dynamics of droplet motion and its evolution during electro-capillarity propelled actuation within microfluidic systems. The study covers a wide gamut of fluids, wherein we investigate the dynamics of both pseudoplastic and dilatant fluid droplets. It is observed that change in the fluid rheology of the non-Newtonian fluids leads to significant morphing of the droplet dynamics during the actuation and propulsion event when compared to the Newtonian counterparts. We validate the theory using experimental reports on similar systems employing Newtonian droplets. The influence of governing parameters such as the actuation voltage and its transients, dielectric layer thickness on the electrodes and electrode spacing is probed. We also explore the influence of the interfacial properties of the system, such as channel wall friction, droplet wettability, and capillary friction, and establish that the fluid rheology, in conjunction with the interfacial features regulate the electro-actuation and propulsion of the droplets. We further provide theoretical estimates on the optimal design of the electro-actuation system in terms of a proposed electro-interfacial tension parameter. The findings may hold significance towards design and development of microfluidics with electro-actuation systems.

Graphical Abstract



中文翻译:

电毛细管通过微限制推动非牛顿液滴的流体动力学

摘要

在本文中,我们从理论上探讨了微流体系统内电毛细驱动驱动过程中液滴运动的动力学及其演变。该研究涵盖了广泛的流体,其中我们研究了假塑性和膨胀液滴的动力学。据观察,与牛顿流体相比,非牛顿流体的流体流变学变化导致驱动和推进事件期间液滴动力学的显着变形。我们使用使用牛顿液滴的类似系统的实验报告验证了该理论。探讨了诸如驱动电压及其瞬态、介电层厚度对电极和电极间距等控制参数的影响。我们还探讨了系统界面特性的影响,例如通道壁摩擦、液滴润湿性和毛细管摩擦,并确定流体流变性与界面特征一起调节液滴的电驱动和推进。我们根据提出的电界面张力参数进一步提供了关于电驱动系统优化设计的理论估计。这些发现可能对设计和开发具有电驱动系统的微流体具有重要意义。我们根据提出的电界面张力参数进一步提供了关于电驱动系统优化设计的理论估计。这些发现可能对设计和开发具有电驱动系统的微流体具有重要意义。我们根据提出的电界面张力参数进一步提供了关于电驱动系统优化设计的理论估计。这些发现可能对设计和开发具有电驱动系统的微流体具有重要意义。

图形概要

更新日期:2022-04-26
down
wechat
bug