当前位置: X-MOL 学术Int. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetics and Equilibrium Studies of the Adsorption of Copper(II) Ions from Industrial Wastewater Using Activated Carbons Derived from Sugarcane Bagasse
International Journal of Chemical Engineering ( IF 2.3 ) Pub Date : 2022-04-23 , DOI: 10.1155/2022/6928568
Temiloluwa E. Amoo 1 , Kehinde O. Amoo 1, 2 , Opeyemi A. Adeeyo 1 , Clement O. Ogidi 3
Affiliation  

The monocomponent adsorption process of Cu(II) ions in synthesized industrial wastewater were investigated using activated carbons (BACs) derived from sugarcane bagasse as the precursor. Batch adsorption studies were done by treating the precursor with H3PO4 (BAC-P) and ZnCl2 (BAC-Zn) in order to observe the effects of experimental variables such as contact time, pH of the solution, and adsorbent dose. The Langmuir isotherm model excellently described the adsorption data for both the derived BACs, indicating monolayer coverage on the BACs with the determination coefficients close to the value of one. Furthermore, the maximum adsorption capacities of 589 and 225 at 30°C were obtained for BAC-P and BAC-Zn adsorbents, respectively. The modeling of kinetic data of Cu(II) ions adsorption onto BAC-P and BAC-Zn adsorbents illustrated that the Elovich kinetic model fitted well. Here, the adsorption process was film-diffusion controlling, while being principally governed by external mass transport where the slowest step is the diffusion of the particles through the film layer. The mechanism of the adsorption process was proposed taking into cognizance of the ion exchange and surface complexation on active sites between the negatively charged surface of the BACs and the positively charged Cu(II) ions. The BACs were characterized using analytical methods such as SEM, FTIR, EDX, XRD, BET surface area, and zeta potential measurements. Both BACs mainly composed of mesopores and bonds of O-H, C-O, C=O, and C-O-C. The BET surface area of BAC-P and BAC-Zn was 427.5 and 282 m2/g before adsorption, and their isoelectric point (pHIEP) 3.70 and 5.26, respectively.
更新日期:2022-04-24
down
wechat
bug