当前位置: X-MOL 学术Prog. Aerosp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of avian-inspired morphing for UAV flight control
Progress in Aerospace Sciences ( IF 11.5 ) Pub Date : 2022-04-21 , DOI: 10.1016/j.paerosci.2022.100825
Christina Harvey 1 , Lawren L. Gamble 2 , Christian R. Bolander 3 , Douglas F. Hunsaker 3 , James J. Joo 4 , Daniel J. Inman 1
Affiliation  

The impressive maneuverability demonstrated by birds has so far eluded comparably sized uncrewed aerial vehicles (UAVs). Modern studies have shown that birds’ ability to change the shape of their wings and tail in flight, known as morphing, allows birds to actively control their longitudinal and lateral flight characteristics. These advances in our understanding of avian flight paired with advances in UAV manufacturing capabilities and applications has, in part, led to a growing field of researchers studying and developing avian-inspired morphing aircraft. Because avian-inspired morphing bridges at least two distinct fields (biology and engineering), it becomes challenging to compare and contrast the current state of knowledge. Here, we have compiled and reviewed the literature on flight control and stability of avian-inspired morphing UAVs and birds to incorporate both an engineering and a biological perspective. We focused our survey on the longitudinal and lateral control provided by wing morphing (sweep, dihedral, twist, and camber) and tail morphing (incidence, spread, and rotation). In this work, we discussed each degree of freedom individually while highlighting some potential implications of coupled morphing designs. Our survey revealed that wing morphing can be used to tailor lift distributions through morphing mechanisms such as sweep, twist, and camber, and produce lateral control through asymmetric morphing mechanisms. Tail morphing contributes to pitching moment generation through tail spread and incidence, with tail rotation allowing for lateral moment control. The coupled effects of wing–tail morphing represent an emerging area of study that shows promise in maximizing the control of its morphing components. By contrasting the existing studies, we identified multiple novel avian flight control methodologies that engineering studies could validate and incorporate to enhance maneuverability. In addition, we discussed specific situations where avian-inspired UAVs can provide new insights to researchers studying bird flight. Collectively, our results serve a dual purpose: to provide testable hypotheses of flight control mechanisms that birds may use in flight as well as to support the design of highly maneuverable and multi-functional UAV designs.



中文翻译:

无人机飞行控制中受鸟类启发的变形综述

迄今为止,鸟类表现出的令人印象深刻的机动性一直没有达到同等大小的无人驾驶飞行器 (UAV)。现代研究表明,鸟类在飞行中改变翅膀和尾巴形状的能力,称为变形,可以让鸟类主动控制它们的纵向和横向飞行特性。我们对鸟类飞行理解的这些进步与无人机制造能力和应用的进步相结合,在一定程度上导致研究和开发受鸟类启发的变形飞机的研究人员领域不断扩大。由于受鸟类启发的变形至少连接了两个不同的领域(生物学和工程学),因此比较和对比当前的知识状态变得具有挑战性。这里,我们整理并回顾了有关受鸟类启发的变形无人机和鸟类的飞行控制和稳定性的文献,以结合工程学和生物学的观点。我们将调查重点放在机翼变形(后掠、二面角、扭曲和外倾)和尾部变形(入射、展开和旋转)提供的纵向和横向控制上。在这项工作中,我们分别讨论了每个自由度,同时强调了耦合变形设计的一些潜在影响。我们的调查显示,机翼变形可用于通过变形机制(如扫掠、扭曲和外倾)来调整升力分布,并通过不对称变形机制产生横向控制。尾部变形有助于通过尾部伸展和撞击产生俯仰力矩,尾部旋转允许横向力矩控制。翼尾变形的耦合效应代表了一个新兴的研究领域,它显示出最大限度地控制其变形组件的前景。通过对比现有研究,我们确定了多种新颖的鸟类飞行控制方法,工程研究可以验证和整合这些方法以增强机动性。此外,我们还讨论了受鸟类启发的无人机可以为研究鸟类飞行的研究人员提供新见解的具体情况。总的来说,我们的研究结果具有双重目的:为鸟类可能在飞行中使用的飞行控制机制提供可测试的假设,并支持高度机动和多功能无人机设计的设计。通过对比现有研究,我们确定了多种新颖的鸟类飞行控制方法,工程研究可以验证和整合这些方法以增强机动性。此外,我们还讨论了受鸟类启发的无人机可以为研究鸟类飞行的研究人员提供新见解的具体情况。总的来说,我们的研究结果具有双重目的:为鸟类可能在飞行中使用的飞行控制机制提供可测试的假设,并支持高度机动和多功能无人机设计的设计。通过对比现有研究,我们确定了多种新颖的鸟类飞行控制方法,工程研究可以验证和整合这些方法以增强机动性。此外,我们还讨论了受鸟类启发的无人机可以为研究鸟类飞行的研究人员提供新见解的具体情况。总的来说,我们的研究结果具有双重目的:为鸟类可能在飞行中使用的飞行控制机制提供可测试的假设,并支持高度机动和多功能无人机设计的设计。

更新日期:2022-04-23
down
wechat
bug