当前位置: X-MOL 学术Cold Reg. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of different ice contents on heat transfer and mechanical properties of concrete
Cold Regions Science and Technology ( IF 3.8 ) Pub Date : 2022-04-22 , DOI: 10.1016/j.coldregions.2022.103570
Yanjun Shen 1, 2, 3 , You Lv 1 , Hongwei Yang 4 , Wen Ma 1 , Lei Zhang 1 , Jia Pan 5
Affiliation  

With annually decreasing shallow mineral resources, development and utilization of deep mineral resources are critical. However, heat hazards in deep mines pose hidden dangers to health and safe operation of equipment. Therefore, a suitable cooling method is an urgent concern in deep high-temperature mines. This study proposes a cooling method that introduces ice into concrete for phase change cooling and improved strength characteristics. It can be used in deep high-temperature mines, and is known as iced-concrete technology. Based on temperature monitoring, mechanical strength tests, and microstructure tests, this study explores the influence of different ice contents (0 %, 10 %, 20 %, 30 %, 40 %, 50 %, 60 %) on heat transfer and mechanical properties of concrete, and analyzes the mechanism of heat transfer and the mechanical properties of concrete under the action of ice particles. The results show that: (1) the temperature evolution law of concrete with different ice contents takes 18 h–26 h and has a temperature change inflection point interval that first increases and then decreases. With an increase in ice content, the lower the initial temperature, the greater the rate of temperature change. (2) Ice particles have an obvious positive effect on the uniaxial compressive strength and splitting strength of concrete; the final mechanical properties of concrete are positively correlated with the ice content with a constant water (ice)–cement ratio. (3) Compared with ordinary concrete, the initial low-temperature water storage capacity of iced concrete promotes formation of hydration products in the later stage to some extent, improving the content of hydration products in the curing stage, promoting the full filling of internal concrete pores, reducing the content of harmful macropores and mesopores, optimizing the pore structure, and improving the compactness and mechanical strength of the concrete. (4) The cooling efficiency of concrete was increased with an increase in ice content. The cooling efficiency of concrete with 60 % ice content was six times that of ordinary concrete. When the ice content exceeded 20 %, the cooling capacity generated by ice–water phase change was greater than the heat absorbed by the temperature change of the water.



中文翻译:

不同冰含量对混凝土传热和力学性能的影响

随着浅层矿产资源的逐年减少,深部矿产资源的开发利用至关重要。然而,深矿热危害给设备的健康和安全运行带来隐患。因此,合适的冷却方式是深部高温矿井急需关注的问题。本研究提出了一种冷却方法,将冰引入混凝土中以进行相变冷却并提高强度特性。可用于深部高温矿井,被誉为冰混凝土技术。本研究基于温度监测、机械强度测试和微观结构测试,探讨了不同冰含量(0 %、10 %、20 %、30 %、40 %、50 %、60 %)对传热和力学性能的影响混凝土,分析了冰粒作用下混凝土的传热机理和力学性能。结果表明:(1)不同含冰量混凝土的温度演化规律为18 h~26 h,具有先增大后减小的温度变化拐点区间。随着冰含量的增加,初始温度越低,温度变化率越大。(2)冰粒对混凝土的单轴抗压强度和劈裂强度有明显的正向影响;混凝土的最终力学性能与冰含量呈正相关,且水(冰)灰比恒定。(3)与普通混凝土相比,冰砼初期低温蓄水能力在一定程度上促进后期水化产物的形成,提高养护阶段水化产物的含量,促进混凝土内部孔隙的充分填充,减少有害大孔隙的含量和中孔,优化孔隙结构,提高混凝土的密实度和力学强度。(4)混凝土的冷却效率随着冰含量的增加而增加。含冰量为 60% 的混凝土的冷却效率是普通混凝土的 6 倍。当冰含量超过20%时,冰水相变产生的冷却能力大于水的温度变化吸收的热量。促进混凝土内部孔隙的充分填充,降低有害大孔和中孔的含量,优化孔隙结构,提高混凝土的密实度和力学强度。(4)混凝土的冷却效率随着冰含量的增加而增加。含冰量为 60% 的混凝土的冷却效率是普通混凝土的 6 倍。当冰含量超过20%时,冰水相变产生的冷却能力大于水的温度变化吸收的热量。促进混凝土内部孔隙的充分填充,降低有害大孔和中孔的含量,优化孔隙结构,提高混凝土的密实度和力学强度。(4)混凝土的冷却效率随着冰含量的增加而增加。含冰量为 60% 的混凝土的冷却效率是普通混凝土的 6 倍。当冰含量超过20%时,冰水相变产生的冷却能力大于水的温度变化吸收的热量。(4)混凝土的冷却效率随着冰含量的增加而增加。含冰量为 60% 的混凝土的冷却效率是普通混凝土的 6 倍。当冰含量超过20%时,冰水相变产生的冷却能力大于水的温度变化吸收的热量。(4)混凝土的冷却效率随着冰含量的增加而增加。含冰量为 60% 的混凝土的冷却效率是普通混凝土的 6 倍。当冰含量超过20%时,冰水相变产生的冷却能力大于水的温度变化吸收的热量。

更新日期:2022-04-22
down
wechat
bug