当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Dynamic Superwettability to Ionic/Molecular Superfluidity
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2022-04-21 , DOI: 10.1021/acs.accounts.2c00053
Xiqi Zhang 1 , Bo Song 2 , Lei Jiang 1, 3
Affiliation  

Life systems present ultralow energy consumption in high-efficiency energy conversion, information transmission, and biosynthesis. The total energy intake of the human body is about 2000 kcal/day to maintain all of our activities, which is comparable to a power of ∼100 W. The energy required for the brain to work is equivalent to ∼20 W, and the rest of the energy (∼80 W) is used for other activities. All in vivo biosyntheses take place only at body temperature, which is much lower than that of in vitro reactions. To achieve these ultralow energy-consumption processes, there should be a kind of ultralow-resistivity matter transport in nanochannels (e.g., ionic and molecular channels), in which the directional collective motion of ions or molecules is a necessary condition rather than traditional Newton diffusion. The directional collective motion of ions and molecules is considered to be ionic/molecular superfluidity. The driving force of ionic/molecular superfluidity formation requires two necessary conditions: (1) Ions or molecules are confined at a certain distance (e.g., approximately twice Debye length (2λD) for ions or twice the van der Waals equilibrium distance (2d0) for molecules). (2) When the attractive potential energy (E0) is stronger than the thermal noise (kBTc), ionic/molecular superfluidity can be formed. The concept of ionic/molecular superfluidity will promote the understanding of energy conversion with ultralow energy consumption in biological systems. The swing of an eel’s body generating electricity and cardiac resuscitation denote the conversion from mechanical energy to electrical energy, and mechanical modulation might result in a coherent resonance of ionic motion. The coherent resonance of Ca2+ in myocardium cells can induce a heartbeat, realizing the conversion from the electrical energy to the mechanical energy of a biological system. The macroscopic quantum state of ion channels is considered to be a carrier of neural information, and the environment field might play a significant role in regulating the macroscopic quantum states of various ion channels. In the biological ion channels system, the coupling of ion channels and their released photons might induce an environment wave which in turn regulates the ion oscillations in the channels to a coherent state. The states of decoherence and coherence might correspond to the states of sleep and action. We also demonstrated the decomposition of ATP to ADP released photons with a frequency of ∼34 THz, which could further drive DNA polymerization in the nanocavity of DNA polymerase. The photochemical (mid- and far-IR) reaction might be the driving force in high-efficiency biosynthesis. Quantized syntheses resonantly driven by multiple mid- and far-IR photons could be further designed in a tubular reactor with membranes of different microporous structures to achieve a high-efficiency synthesis with a low energy consumption. Finally, we point out that the Bose–Einstein condensate potentially widely exists. We expect that this Account will provide new ideas for the key problem in life science: how can life systems present ultralow energy consumption in high-efficiency energy conversion, information transmission, and biosynthesis?

中文翻译:

从动态超润湿性到离子/分子超流体

生命系统在高效能量转换、信息传输和生物合成方面呈现超低能耗。人体的总能量摄入量约为2000大卡/天,以维持我们所有的活动,相当于一个~100瓦的功率。大脑工作所需的能量相当于~20瓦,其余的的能量(~80 W)用于其他活动。所有体内生物合成仅在体温下发生,这远低于体外反应。为了实现这些超低能耗的过程,纳米通道(例如离子和分子通道)中应该存在一种超低电阻率的物质传输,其中离子或分子的定向集体运动是必要条件,而不是传统的牛顿扩散. 离子和分子的定向集体运动被认为是离子/分子超流体。离子/分子超流体形成的驱动力需要两个必要条件:(1)离子或分子被限制在一定距离(例如,大约两倍德拜长度(2λD ) 对于离子或两倍的范德华平衡距离 (2 d 0 ) 对于分子)。(2)当吸引势能( E 0 )大于热噪声( k B T c )时,可以形成离子/分子超流态。离子/分子超流体的概念将促进对生物系统中超低能耗能量转换的理解。鳗鱼身体的摆动发电和心脏复苏表示从机械能到电能的转换,机械调制可能导致离子运动的相干共振。Ca 2+的相干共振在心肌细胞中可以诱发心跳,实现生物系统从电能到机械能的转换。离子通道的宏观量子态被认为是神经信息的载体,环境场可能在调节各种离子通道的宏观量子态中发挥重要作用。在生物离子通道系统中,离子通道与其释放的光子的耦合可能会引起环境波,从而将通道中的离子振荡调节到相干状态。退相干和连贯的状态可能对应于睡眠和行动的状态。我们还证明了 ATP 分解为 ADP 释放的光子频率约为 34 THz,这可以进一步驱动 DNA 聚合酶纳米腔中的 DNA 聚合。光化学(中红外和远红外)反应可能是高效生物合成的驱动力。由多个中红外和远红外光子共振驱动的量化合成可以进一步设计在具有不同微孔结构膜的管式反应器中,以实现低能耗的高效合成。最后,我们指出玻色-爱因斯坦凝聚体可能广泛存在。我们期待这个账目能为生命科学的关键问题提供新的思路:生命系统如何在高效能量转换、信息传输和生物合成中呈现超低能耗?由多个中红外和远红外光子共振驱动的量化合成可以进一步设计在具有不同微孔结构膜的管式反应器中,以实现低能耗的高效合成。最后,我们指出玻色-爱因斯坦凝聚体可能广泛存在。我们期待这个账目能为生命科学的关键问题提供新的思路:生命系统如何在高效能量转换、信息传输和生物合成中呈现超低能耗?由多个中红外和远红外光子共振驱动的量化合成可以进一步设计在具有不同微孔结构膜的管式反应器中,以实现低能耗的高效合成。最后,我们指出玻色-爱因斯坦凝聚体可能广泛存在。我们期待这个账目能为生命科学的关键问题提供新的思路:生命系统如何在高效能量转换、信息传输和生物合成中呈现超低能耗?
更新日期:2022-04-21
down
wechat
bug