当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring planet geology through force-feedback telemanipulation from orbit
Science Robotics ( IF 26.1 ) Pub Date : 2022-04-20 , DOI: 10.1126/scirobotics.abl6307
Michael Panzirsch 1 , Aaron Pereira 1, 2 , Harsimran Singh 1 , Bernhard Weber 1 , Edmundo Ferreira 2 , Andrei Gherghescu 2 , Lukas Hann 2 , Emiel den Exter 2 , Frank van der Hulst 2, 3 , Levin Gerdes 2, 4 , Leonardo Cencetti 2, 5 , Kjetil Wormnes 2 , Jessica Grenouilleau 2 , William Carey 2 , Ribin Balachandran 1 , Thomas Hulin 1 , Christian Ott 1 , Daniel Leidner 1 , Alin Albu-Schäffer 1 , Neal Y Lii 1 , Thomas Krüger 2
Affiliation  

Current space exploration roadmaps envision exploring the surface geology of celestial bodies with robots for both scientific research and in situ resource utilization. In such unstructured, poorly lit, complex, and remote environments, automation is not always possible, and some tasks, such as geological sampling, require direct teleoperation aided by force-feedback (FF). The operator would be on an orbiting spacecraft, and poor bandwidth, high latency, and packet loss from orbit to ground mean that safe, stable, and transparent interaction is a substantial technical challenge. For this scenario, a control method was developed that ensures stability at high delay without reduction in speed or loss of positioning accuracy. At the same time, a new level of safety is achieved not only through FF itself but also through an intrinsic property of the approach preventing hard impacts. On the basis of this method, a tele-exploration scenario was simulated in the Analog-1 experiment with an astronaut on the International Space Station (ISS) using a 6–degree-of-freedom (DoF) FF capable haptic input device to control a mobile robot with manipulator on Earth to collect rock samples. The 6-DoF FF telemanipulation from space was performed at a round-trip communication delay constantly between 770 and 850 milliseconds and an average packet loss of 1.27%. This experiment showcases the feasibility of a complete space exploration scenario via haptic telemanipulation under spaceflight conditions. The results underline the benefits of this control method for safe and accurate interactions and of haptic feedback in general.

中文翻译:

通过轨道上的力反馈遥控探索行星地质

当前的太空探索路线图设想用机器人探索天体的表面地质,以进行科学研究和就地资源利用。在这种非结构化、光线不足、复杂且偏远的环境中,自动化并不总是可行的,并且某些任务,例如地质采样,需要在力反馈 (FF) 的辅助下进行直接远程操作。运营商将在轨道航天器上,而低带宽、高延迟和从轨道到地面的数据包丢失意味着安全、稳定和透明的交互是一项重大的技术挑战。针对这种情况,开发了一种控制方法,可确保高延迟时的稳定性,而不会降低速度或损失定位精度。同时,不仅通过 FF 本身,而且通过防止硬撞击的方法的固有特性,实现了新的安全水平。在此方法的基础上,在国际空间站 (ISS) 上的一位宇航员使用 6 自由度 (DoF) FF 触觉输入设备来控制模拟 1 实验中模拟了远程探索场景。地球上带有机械手的移动机器人,用于收集岩石样本。来自太空的 6 自由度 FF 远程操作以往返通信延迟持续在 770 到 850 毫秒之间进行,平均丢包率为 1.27%。该实验展示了在太空飞行条件下通过触觉遥控实现完整太空探索场景的可行性。
更新日期:2022-04-20
down
wechat
bug