当前位置: X-MOL 学术Nat. Rev. Cardiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The microtubule cytoskeleton in cardiac mechanics and heart failure
Nature Reviews Cardiology ( IF 49.6 ) Pub Date : 2022-04-19 , DOI: 10.1038/s41569-022-00692-y
Matthew A Caporizzo 1, 2 , Benjamin L Prosser 2
Affiliation  

The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the ‘tubulin code’ have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation–contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.



中文翻译:

心脏力学和心力衰竭中的微管细胞骨架

心肌细胞的微管网络具有独特的结构和生物物理学特征,可满足工作心脏的需求。活细胞成像和破译“微管蛋白密码”方面的进展使人们对这种细胞骨架网络及其在心力衰竭中的作用有了新的认识。基于微管的运输通过翻译的时空控制协调收缩装置的生长和维持,同时还组织兴奋-收缩耦合所需的专门膜系统。为了承受工作心脏的高机械负荷,微管经过翻译后修饰和物理强化。为了应对心肌的压力,微管网络通常通过致密化、翻译后修饰和稳定进行重塑。在这些条件下,物理增强的微管抵抗心肌细胞的运动并增加心肌硬度。因此,修饰的微管已成为降低心力衰竭僵硬的治疗靶点。在这篇综述中,我们讨论了有关微管对心脏力学的贡献、心脏病理中微管网络重塑的驱动因素以及靶向心脏微管在获得性心脏病中的治疗潜力的最新证据。

更新日期:2022-04-20
down
wechat
bug