当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable Bidirectional Mechanical Metamaterial with Tunable Stiffness and Frictional Energy Dissipation
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2022-04-14 , DOI: 10.1002/adts.202200135
Aaron McCrary 1 , Mohammad Saber Hashemi 1 , Azadeh Sheidaei 1
Affiliation  

Energy-dissipating mechanical metamaterials possess broad applications where absorbing shocks and isolating vibrations within monolithic and sandwich composite structures are required. This study presents the design of a novel bidirectional mechanical metamaterial with tunable stiffness and energy dissipation. By leveraging the phenomenon of Coulomb friction, the metamaterial dissipates energy when a small gap closes and two walls slide across one another under planar loading. The conceptual design of the metamaterial is parameterized, so the material behavior can be tailored to a particular application. A computational framework is built, using finite element analysis and a multi-objective genetic algorithm to maximize the volumetric energy dissipation such that the unit cell does not undergo plastic deformation. The finite element mesh used in this analysis is first parametrically optimized to minimize simulation time while remaining within a global error threshold. The optimal unit cell is arrayed into a bulk material, formed into a hollow cylinder, and simulated under a compression cycle for different metamaterial densities. A prototype of the hollow cylinder is 3D printed via fused deposition modeling and is tested. Both the simulated and experimental results demonstrate the repeatability of the energy-dissipating property with a strong correlation.

中文翻译:

具有可调刚度和摩擦能量耗散的可编程双向机械超材料

耗能机械超材料具有广泛的应用,其中需要在单片和夹层复合结构中吸收冲击和隔离振动。本研究提出了一种新型双向机械超材料的设计,该材料具有可调节的刚度和能量耗散。通过利用库仑摩擦现象,当一个小间隙关闭并且两个壁在平面载荷下相互滑动时,超材料会消耗能量。超材料的概念设计是参数化的,因此可以针对特定应用定制材料行为。建立了一个计算框架,使用有限元分析和多目标遗传算法来最大化体积能量耗散,从而使晶胞不会发生塑性变形。本分析中使用的有限元网格首先进行参数优化,以最大限度地减少仿真时间,同时保持在全局误差阈值内。最佳晶胞排列成块状材料,形成空心圆柱体,并在不同超材料密度的压缩循环下进行模拟。空心圆柱体的原型通过熔融沉积建模进行 3D 打印并进行了测试。模拟和实验结果都证明了具有强相关性的能量耗散特性的可重复性。空心圆柱体的原型通过熔融沉积建模进行 3D 打印并进行了测试。模拟和实验结果都证明了具有强相关性的能量耗散特性的可重复性。空心圆柱体的原型通过熔融沉积建模进行 3D 打印并进行了测试。模拟和实验结果都证明了具有强相关性的能量耗散特性的可重复性。
更新日期:2022-04-14
down
wechat
bug