当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vortex laser arrays with topological charge control and self-healing of defects
Nature Photonics ( IF 32.3 ) Pub Date : 2022-04-11 , DOI: 10.1038/s41566-022-00986-0
Marco Piccardo 1 , Michael de Oliveira 1, 2 , Antonio Ambrosio 1 , Andrea Toma 3 , Vincenzo Aglieri 3 , Andrew Forbes 4
Affiliation  

Geometric arrays of vortices found in various systems owe their regular structure to mutual interactions within a confined system. In optics, such vortex crystals may form spontaneously within a resonator. Their crystallization is relevant in many areas of physics, although their usefulness is limited by the lack of control over their topology. On the other hand, programmable devices like spatial light modulators allow the design of nearly arbitrary vortex distributions but without any intrinsic evolution. By combining non-Hermitian optics with on-demand topological transformations enabled by metasurfaces, we report a solid-state laser that generates 10 × 10 vortex laser arrays with actively tunable topologies and non-local coupling dictated by the array’s topology. The vortex arrays exhibit sharp Bragg diffraction peaks, witnessing their coherence and topological charge purity, which we spatially resolve over the whole lattice by introducing a parallelized analysis technique. By structuring light at the source, we enable complex transformations that allow to arbitrarily partition orbital angular momentum within the cavity and to heal topological charge defects, thus realizing robust and versatile resonators for applications in topological optics.



中文翻译:

具有拓扑电荷控制和缺陷自愈功能的涡旋激光阵列

在各种系统中发现的几何涡旋阵列将它们的规则结构归功于受限系统内的相互作用。在光学中,这种涡旋晶体可以在谐振器内自发形成。它们的结晶在物理学的许多领域都是相关的,尽管它们的实用性因缺乏对其拓扑结构的控制而受到限制。另一方面,像空间光调制器这样的可编程设备允许设计几乎任意的涡流分布,但没有任何内在演化。通过将非厄米特光学与超表面启用的按需拓扑变换相结合,我们报告了一种固态激光器,该激光器可生成 10 × 10 涡旋激光阵列,具有主动可调拓扑和由阵列拓扑决定的非局部耦合。涡旋阵列表现出尖锐的布拉格衍射峰,见证了它们的相干性和拓扑电荷纯度,我们通过引入并行分析技术在整个晶格上进行空间解析。通过在光源处构造光,我们实现了复杂的变换,允许在腔内任意划分轨道角动量并修复拓扑电荷缺陷,从而实现用于拓扑光学应用的稳健且多功能的谐振器。

更新日期:2022-04-11
down
wechat
bug