当前位置: X-MOL 学术Hydrometallurgy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional reactive transport simulation of Uranium in situ recovery: Large-scale well field applications in Shu Saryssu Bassin, Tortkuduk deposit (Kazakhstan)
Hydrometallurgy ( IF 4.8 ) Pub Date : 2022-04-08 , DOI: 10.1016/j.hydromet.2022.105873
Antoine Collet 1, 2 , Olivier Regnault 1, 2 , Alexandr Ozhogin 3 , Assemgul Imantayeva 3 , Loïc Garnier 3
Affiliation  

Uranium in situ recovery (ISR) is the most widely used uranium mining technique worldwide. It consists of the dissolution of the ore by a mining solution, directly within the deposit. By predicting fluid flow and geochemical reactions in reservoirs, reactive transport (RT) modelling is a powerful tool to better understand and pilot ISR production. However, very few industrial uses have been reported thus far. This paper fills the gaps by illustrating a large-scale well-field application of RT modelling at one of the largest ISR mines worldwide, which is operated by Katco. This study highlights the robustness of a complex workflow based on the coupled reactive transport software HYTEC and its added value for the operator in the context of uranium ISR. The robustness demonstration is performed on 2394 wells covering 39 different production areas (blocks). The model reproduces the observed uranium concentrations and pH of pumped solutions over time scales up to 12 years. Only three parameters are manually adjusted to calibrate the model: global initial grades in clays (beidellite), calcite, and iron hydroxide (goethite). The discrepancy between simulated and observed uranium production and acid consumption decreases as the observation scale widens, showing that local errors compensate for each other. These deviations are mainly explained by the uncertainties of the 3D geological models and not by the RT simulations. Furthermore, the robustness of the model is a key asset for decision-making as it enables accurate predictions. This accuracy is illustrated through a case study of four of the simulated blocks. In 2019, after 10 years of production, the well field was redesigned to target the remaining uranium using the RT-based workflow. Several scenarios were simulated and sequentially optimised using a geometallurgical approach. The final adopted design predicted a 28% increase in uranium production and 35% in economic gains over the first two years of simulation alone (2019–2021). These theoretical gains were validated in practice as the comparison between the 2019 predictions and observations over 16 months showed a deviation less than 10% in the total uranium production, which decreased to 1.9% using the observed operational conditions, which reinforces the predictability of the workflow and validates the forecasted gains.



中文翻译:

铀原位回收的三维反应输运模拟:Shu Saryssu 盆地、Tortkuduk 矿床(哈萨克斯坦)的大规模井场应用

铀原位回收 (ISR) 是世界范围内使用最广泛的铀矿开采技术。它包括直接在矿床内通过采矿溶液溶解矿石。通过预测储层中的流体流动和地球化学反应,反应输运 (RT) 建模是更好地理解和试点 ISR 生产的有力工具。然而,迄今为止,很少有工业用途的报道。本文通过说明 RT 建模在全球最大的 ISR 矿山之一(由 Katco 运营)的大规模井场应用来填补空白。本研究强调了基于耦合反应传输软件 HYTEC 的复杂工作流程的稳健性及其在铀 ISR 环境中对运营商的附加值。在覆盖 39 个不同产区(区块)的 2394 口井上进行了稳健性论证。该模型再现了在长达 12 年的时间尺度上观察到的泵送溶液的铀浓度和 pH 值。只需手动调整三个参数来校准模型:粘土(贝得石)、方解石和氢氧化铁(针铁矿)的整体初始等级。随着观测规模的扩大,模拟和观测到的铀产量和酸消耗之间的差异减小,表明局部误差相互补偿。这些偏差主要是由 3D 地质模型的不确定性而不是 RT 模拟来解释的。此外,模型的稳健性是决策制定的关键资产,因为它可以实现准确的预测。通过四个模拟块的案例研究说明了这种准确性。2019 年,经过 10 年的生产,井场经过重新设计,以使用基于 RT 的工作流程瞄准剩余的铀。使用地质冶金方法模拟和顺序优化了几个场景。最终采用的设计预测仅在模拟的前两年(2019-2021 年),铀产量将增加 28%,经济收益将增加 35%。这些理论成果在实践中得到了验证,因为 2019 年的预测与 16 个月的观测结果之间的比较表明,铀总产量的偏差小于 10%,使用观察到的操作条件下降到 1.9%,这加强了工作流程的可预测性并验证预测的收益。经过 10 年的生产,井场经过重新设计,使用基于 RT 的工作流程瞄准剩余的铀。使用地质冶金方法模拟和顺序优化了几个场景。最终采用的设计预测仅在模拟的前两年(2019-2021 年),铀产量将增加 28%,经济收益将增加 35%。这些理论成果在实践中得到了验证,因为 2019 年的预测与 16 个月的观测结果之间的比较表明,铀总产量的偏差小于 10%,使用观察到的操作条件下降到 1.9%,这加强了工作流程的可预测性并验证预测的收益。经过 10 年的生产,井场经过重新设计,使用基于 RT 的工作流程瞄准剩余的铀。使用地质冶金方法模拟和顺序优化了几个场景。最终采用的设计预测仅在模拟的前两年(2019-2021 年),铀产量将增加 28%,经济收益将增加 35%。这些理论成果在实践中得到了验证,因为 2019 年的预测与 16 个月的观测结果之间的比较表明,铀总产量的偏差小于 10%,使用观察到的操作条件下降到 1.9%,这加强了工作流程的可预测性并验证预测的收益。使用地质冶金方法模拟和顺序优化了几个场景。最终采用的设计预测仅在模拟的前两年(2019-2021 年),铀产量将增加 28%,经济收益将增加 35%。这些理论成果在实践中得到了验证,因为 2019 年的预测与 16 个月的观测结果之间的比较表明,铀总产量的偏差小于 10%,使用观察到的操作条件下降到 1.9%,这加强了工作流程的可预测性并验证预测的收益。使用地质冶金方法模拟和顺序优化了几个场景。最终采用的设计预测仅在模拟的前两年(2019-2021 年),铀产量将增加 28%,经济收益将增加 35%。这些理论成果在实践中得到了验证,因为 2019 年的预测与 16 个月的观测结果之间的比较表明,铀总产量的偏差小于 10%,使用观察到的操作条件下降到 1.9%,这加强了工作流程的可预测性并验证预测的收益。

更新日期:2022-04-08
down
wechat
bug