当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction
Nano-Micro Letters ( IF 31.6 ) Pub Date : 2022-04-06 , DOI: 10.1007/s40820-022-00835-3
Qiong He 1 , Guozhao Fang 1 , Zhi Chang 1 , Yifang Zhang 2 , Shuang Zhou 1 , Miao Zhou 1 , Simin Chai 1 , Yue Zhong 1 , Guozhong Cao 3 , Shuquan Liang 1 , Anqiang Pan 1
Affiliation  

Aqueous zinc metal batteries are noted for their cost-effectiveness, safety and environmental friendliness. However, the water-induced notorious issues such as continuous electrolyte decomposition and uneven Zn electrochemical deposition remarkably restrict the development of the long-life zinc metal batteries. In this study, zwitterionic sulfobetaine is introduced to copolymerize with acrylamide in zinc perchlorate (Zn(ClO4)2) solution. The designed gel framework with hydrophilic and charged groups can firmly anchor water molecules and construct ion migration channels to accelerate ion transport. The in situ generated hybrid interface, which is composed of the organic functionalized outer layer and inorganic Cl containing inner layer, can synergically lower the mass transfer overpotential, reduce water-related side reactions and lead to uniform Zn deposition. Such a novel electrolyte configuration enables Zn//Zn cells with an ultra-long cycling life of over 3000 h and a low polarization potential (~ 0.03 V) and Zn//Cu cells with high Coulombic efficiency of 99.18% for 1000 cycles. Full cells matched with MnO2 cathodes delivered laudable cycling stability and impressive shelving ability. Besides, the flexible quasi-solid-state batteries which are equipped with the anti-vandalism ability (such as cutting, hammering and soaking) can successfully power the LED simultaneously. Such a safe, processable and durable hydrogel promises significant application potential for long-life flexible electronic devices.



中文翻译:

通过水合多两性离子电解质构建超稳定和低极化复合锌阳极界面

水系锌金属电池以其成本效益、安全性和环境友好性而著称。然而,水引起的电解质连续分解和锌电化学沉积不均匀等问题严重制约了长寿命锌金属电池的发展。在这项研究中,将两性离子磺基甜菜碱引入高氯酸锌(Zn(ClO 4 ) 2 )溶液中与丙烯酰胺共聚。设计的具有亲水性和带电基团的凝胶框架可以牢固地锚定水分子并构建离子迁移通道以加速离子传输。原位生成的混合界面,由有机功能化外层和无机 Cl -含有内层,可以协同降低传质过电位,减少与水相关的副反应并导致均匀的 Zn 沉积。这种新颖的电解质配置使 Zn//Zn 电池具有超过 3000 小时的超长循环寿命和低极化电位(~0.03 V)和 Zn//Cu 电池在 1000 次循环中具有 99.18% 的高库仑效率。与 MnO 2阴极匹配的全电池提供了值得称赞的循环稳定性和令人印象深刻的搁置能力。此外,具有防破坏能力(如切割、锤击和浸泡)的柔性准固态电池可以成功地同时为LED供电。这种安全、可加工和耐用的水凝胶有望在长寿命柔性电子设备中发挥巨大的应用潜力。

更新日期:2022-04-06
down
wechat
bug