当前位置: X-MOL 学术Metab. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of highly characterized genetic bioparts for efficient gene expression in CO2-fixing Eubacterium limosum
Metabolic Engineering ( IF 6.8 ) Pub Date : 2022-03-29 , DOI: 10.1016/j.ymben.2022.03.016
Yoseb Song 1 , Jiyun Bae 1 , Sangrak Jin 1 , Hyeonsik Lee 1 , Seulgi Kang 1 , Jinsoo Lee 1 , Jongoh Shin 1 , Suhyung Cho 2 , Byung-Kwan Cho 2
Affiliation  

Acetogenic bacteria demonstrate industrial potential for utilizing carbon dioxide (CO2) for biochemical production using the Wood-Ljungdahl pathway. However, the metabolic engineering of acetogenic bacteria has been hampered by the limited number of available genetic bioparts for gene expression. Here, we integrated RNA sequencing, ribosome profiling, differential RNA sequencing, and RNA 3′-end sequencing results of Eubacterium limosum to establish genetic bioparts, such as promoters, 5′ untranslated regions, and transcript terminators, to regulate transcriptional and translational expression of genes composing of biosynthetic pathways. In addition, a transformation method for the strain was developed to efficiently deliver the obtained genetic bioparts into cells, resulting in a transformation efficiency of 2.5 × 105 CFU/μg DNA. Using this method, the genetic bioparts were efficiently introduced, and their strengths were measured, which were then applied to optimize the heterologous expression of acetolactate synthase and acetolactate decarboxylase for non-native biochemical acetoin production. The strategy developed in this study is the first report on integrating multi-omics data for biopart development of CO2 or syngas utilizing acetogenic bacteria, which lays a foundation for the efficient production of biochemicals from CO2 or syngas as a carbon feedstock under autotrophic growth conditions.



中文翻译:

开发高度表征的遗传生物部件,用于在 CO2 固定 Eubacterium limosum 中有效表达基因

产乙酸菌展示了利用 Wood-Ljungdahl 途径利用二氧化碳 (CO 2 ) 进行生化生产的工业潜力。然而,产乙酸细菌的代谢工程受到用于基因表达的可用遗传生物部件数量有限的阻碍。在这里,我们整合了拟南芥的 RNA 测序、核糖体分析、差异 RNA 测序和 RNA 3' 端测序结果建立基因生物部分,如启动子、5'非翻译区和转录终止子,以调节组成生物合成途径的基因的转录和翻译表达。此外,还开发了一种菌株的转化方法,将获得的遗传生物部分有效地传递到细胞中,转化效率为 2.5 × 10 5  CFU/μg DNA。使用这种方法,有效地引入了遗传生物部分,并测量了它们的强度,然后将其用于优化乙酰乳酸合酶和乙酰乳酸脱羧酶的异源表达,用于非天然生化生产乙偶姻。本研究制定的策略是第一份关于整合多组学数据以开发 CO 2生物部件的报告或合成气利用产乙酸菌,这为在自养生长条件下以 CO 2或合成气作为碳原料高效生产生化产品奠定了基础。

更新日期:2022-03-29
down
wechat
bug