当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2022-02-01 , DOI: 10.1063/5.0077667
Cheng Zhang 1, 2 , Huamin Chen 1, 3 , Xiaohong Ding 1, 2 , Farnaz Lorestani 2 , Chunlei Huang 1 , Bingwen Zhang 1 , Biao Zheng 1 , Jun Wang 1 , Huanyu Cheng 2 , Yun Xu 3
Affiliation  

Practical applications of next-generation stretchable electronics hinge on the development of sustained power supplies to drive highly sensitive on-skin sensors and wireless transmission modules. Although the manufacture of stretchable self-charging power units has been demonstrated by integrating stretchable energy harvesters and power management circuits with energy storage units, they often suffer from low and unstable output power especially under mechanical deformation and human movements, as well as complex and expensive fabrication processes. This work presents a low-cost, scalable, and facile manufacturing approach based on laser-induced graphene foams to yield a self-powered wireless sensing platform. 3D porous foams with high specific surface area and excellent charge transport provide an efficient flow of triboelectric electrons in triboelectric nanogenerators. The surface coating or doping with second laser irradiation on these foams can also form a 3D composite to provide high energy density in micro-supercapacitor arrays. The integration of a triboelectric nanogenerator and power management circuits with micro-supercapacitor arrays can efficiently harvest intermittent mechanical energy from body movements into stable power output. 3D foams and their composites patterned into various geometries conveniently create various deformable sensors on large scale at low cost. The generated stable, yet high, power with adjustable voltage and current outputs drives various stretchable sensors and wireless transmission modules to wirelessly measure pulse, strain, temperature, electrocardiogram, blood pressure, and blood oxygen. The self-powered, wireless, wearable sensing platform paves the way to wirelessly detect clinically relevant biophysical and biochemical signals for early disease diagnostics and healthy aging.

中文翻译:

基于激光诱导石墨烯泡沫的人体运动驱动自供电可拉伸传感平台

下一代可拉伸电子产品的实际应用取决于可持续电源的开发,以驱动高度敏感的皮肤传感器和无线传输模块。尽管通过将可伸缩能量收集器和电源管理电路与能量存储单元集成来演示可伸缩自充电电源单元的制造,但它们通常存在输出功率低且不稳定的问题,尤其是在机械变形和人体运动的情况下,以及复杂且昂贵的问题制造工艺。这项工作提出了一种基于激光诱导石墨烯泡沫的低成本、可扩展且简便的制造方法,以产生自供电的无线传感平台。具有高比表面积和出色电荷传输的 3D 多孔泡沫可在摩擦纳米发电机中提供有效的摩擦电子流动。在这些泡沫上进行第二次激光照射的表面涂层或掺杂也可以形成 3D 复合材料,以在微型超级电容器阵列中提供高能量密度。摩擦纳米发电机和电源管理电路与微型超级电容器阵列的集成可以有效地从身体运动中收集间歇性机械能,并将其转化为稳定的功率输出。3D 泡沫及其复合材料图案化成各种几何形状,可方便地以低成本大规模制造各种可变形传感器。生成的稳定,但高,具有可调电压和电流输出的电源驱动各种可伸缩传感器和无线传输模块,以无线测量脉搏、应变、温度、心电图、血压和血氧。自供电、无线、可穿戴传感平台为无线检测临床相关的生物物理和生化信号以进行早期疾病诊断和健康老龄化铺平了道路。
更新日期:2022-02-01
down
wechat
bug