当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CsMYB184 regulates caffeine biosynthesis in tea plants
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2022-03-25 , DOI: 10.1111/pbi.13814
Penghui Li 1 , Zhili Ye 1 , Jiamin Fu 1 , Yujie Xu 1 , Yihua Shen 1 , Yanrui Zhang 1 , Dingkun Tang 1 , Ping Li 1 , Hao Zuo 1 , Wei Tong 1 , Shucai Wang 2 , Alisdair R Fernie 3 , Jian Zhao 1
Affiliation  

As the most well-known and globally consumed central nervous system stimulant, caffeine is a purine alkaloid natural product usually derived from tea and coffee. Caffeine has a wide range of health benefits on the human body, and plays crucial roles in pollination, resistance to herbivore attacks, and pathogen infections in plants (Zhao et al., 2020). While caffeine biosynthetic pathways have been extensively studied in tea (Camellia sinensis L) and coffee plants, the regulation of caffeine biosynthesis is not understood (Zhao et al., 2020).

Tea Caffeine Synthase1 (TCS1) is the first N-methyltransferase gene reported in the tea plant, possessing the 1-N methyltransferase activity responsible for converting theobromine to caffeine (Kato et al., 2000). Studies on the structure–activity of TCS1 and genetic variations in the TCS1 gene of tea plant populations have supported that TCS1 is a determination enzyme for caffeine content (Jin et al., 2016). To explore the regulation of caffeine biosynthesis, 23 candidate transcription factors (TFs) from Weighted Gene Co-expression Network Analysis were screened in a luciferase reporter gene activation system driven by the TCS1 promoter (Figure S1). MYB184 (TEA029017) showed the highest TCS1 promoter activation with 4.7-fold (Figure 1a). Yeast one-hybrid assay showed that the −828 to −1670 bp region of TCS1 promoter, which contains an MYBCORE and a fused MYB1AT-MYBPLANT, was critically required for MYB184 recognition (Figure 1b). In planta promoter, trans-activation assays further confirmed the regions required for binding to and activating of the TCS1 promoter by MYB184 to be between −1596 and −1670 bp (Figure 1c). EMSA assay was performed to further validate the binding of MYB184 to the fused MYB1AT-MYBPLANT motif in vitro (Figure 1d–f).

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
CsMYB184 positively regulates caffeine biosynthesis in tea plants. (a) Screening for trans-activation of Tea caffeine synthase (TCS1) promoter with 23 TFs in luciferase reporter assay in Arabidopsis protoplasts with Renilla luciferase as a reference. (b) MYB184 binds to the TCS1 promoter. Based on the distribution of cis-elements, the full-length TCS1 promoter (P1, −1 to −1670 bp) and three truncated versions, namely P2 (−1 to −1596 bp), P3 (−1 to −828 bp), and P4 (−1 to −176 bp) were cloned in front of the HIS gene respectively. (c) Promoter activation of the TCS1-P1, -P2, -P3, and -P4 promoters by MYB184. (d) The putative MYB binding sites in TCS1 promoter for EMSA assay. (e) Recombinant GST-MYB184 fusion protein purified from Escherichia. coli BL21 cells. The arrow indicates the target protein. (f) EMSA assay of MYB184 binding to TCS1 promoters. Competitor represents the putative motif without the biotin label. The concentration of competitors with different rations with a biotin-labelled motif is 5×, 10×, or 50×. The arrow indicates the target biotin signal. (g) Down-regulation of MYB184 in tea plant shoot tips treated with asODN-MYB184. (h) Repressed caffeine biosynthesis in MYB184-KD tea shoot tips compared with sODN. (i) Effect of MYB184-KD on TCS1 expression in tea plant shoot tips. (j) Overexpression of MYB184 in transgenic tea hairy roots (n = 4). (k) HPLC traces of caffeine from tea plant hairy roots overexpressing MYB184 (MYB184OE) and GFP (control). (l, m) Ectopic expression of MYB184 promoted caffeine biosynthesis (l) and TCS1 expression level (m) in MYB184OE hairy roots compared with GFP hairy roots. (n) HPLC analysis of purine alkaloids in young leaves of Shuchazao and C. ptilophylla (KKC). (o) Comparison of TCS1 expression levels in young leaves of KKC and other ten cultivars. SCZ, Shuchazao; CBL, Chunbolv; FZ2H, Fuzaoerhao; ZC102, Zhongcha102; BHZ, Baihaozao; ZY, Ziyan; ZN117, Zhenong117; RX, Ruixiang, BS, Benshan; XH, Xiuhong. (p) Distribution of MYB binding site remarked using a red box on the TCS1 promoters of KKC and SCZ. (q) Expression of MYB184 and other TF genes in young leaves of KKC and ten cultivars. Only MYB184 was significantly down-regulated in KKC and marked with red asterisks. (r) Fold-change of MYB184 expression level in KKC and tea cultivars. (s) PCR-based detection of LTR insertions in KKC and some tea cultivars. The triangle indicates LTR insertion; orange rectangles indicate exons. The forward (F) and reverse (R) primers used to detect the LTR insertion were also marked. (t) Different MYB184 promoter activities from KKC and tea cultivars (SCZ, ZC102, BHZ, BS) were verified in tobacco leaves. (u) Caffeine contents in tea cultivars (n = 50) and wild tea relatives in Thea section (including Camellia taliensis, Camellia gymnogyna, Camellia crassicolumna, and Camellia ptilophylla). (v, w) Expression patterns of MYB184 (v) and TCS1 (w) in tea cultivars and wild tea relatives. Statistical significance for each comparison is indicated (t-test: *P < 0.05, **P < 0.01). CsACTIN and CsGAPDH were introduced to normalize the expression.

We then examined the function of MYB184 in regulating caffeine synthesis in tea plants. An antisense oligodeoxynucleotide (asODN) interference experiment was performed with tea plant shoot tips to knock down MYB184 expression (MYB184-KD) (Figure 1g). Accordingly, caffeine contents and the expression of TCS1 were significantly reduced in MYB184-KD shoot tips compared with the senseODN control (Figure 1h–i). However, overexpression of MYB184 (MYB184OE) in tea plant transgenic hairy root lines significantly up-regulated TCS1 transcription and thereby increased the caffeine contents as compared with wild-type root controls (Figure 1j–m).

KeKecha (Camellia ptilophylla, KKC in short), belonging to the Thea section, had significantly lower caffeine but higher theobromine (Figure 1n). Although a previous study showed that TCS1 in KKC had lower NMT activity compared with TCS1 in modern tea cultivars (Jin et al., 2016), we detected a significantly lower expression level of TCS1 in KKC than in other tea cultivars (Figure 1o). To understand why TCS1 in KKC is down-regulated, we cloned and compared the promoter sequences of TCS1 from KKC and from SCZ. However, the alignment of the promoter sequences did not show critical Indels or SNPs on MYB binding sites (Figure 1p). On the other hand, transcriptome analyses showed that only MYB184 expression level was significantly lower by ~14-fold in KKC than in other tea cultivars (Figure 1q,r). We thus proposed that the lower MYB184 transcript level in KKC might be the cause of the reduced TCS1 expression level.

We further cloned the promoter of the MYB184 gene from KKC (proMYB184KKC), and compared it with those from other tea cultivars. A 437-bp long terminal repeat (LTR) insertion was identified only in the proMYB184KKC at the site of −982 bp, but not in these promoters from other tea cultivars, as verified with both MYB184 promoter cloning and detection with PCR primers specific for the LTR insertion (Figure 1s). In tea plants, LTR insertion in a gene usually leads to suppression of the gene expression (Xia et al., 2020), which may explain the lower expression level of MYB184 in KKC than in other tea cultivars. Indeed, GUS reporter assays showed that the proMYB184KKC with the LTR insertion exhibited clearly lower promoter activity than four representative promoters without the LTR insertion from tea cultivars (Figure 1t). We thus concluded that the LTR insertion in the promoter of MYB184 resulted in suppressed MYB184 expression, leading to the lower TCS1 transcript level and thereby lower caffeine contents in KKC.

To expand MYB184 activation of TCS1 to other Camellia species, we examined several other wild tea relatives that are known to contain significantly lower levels of caffeine compared with modern tea cultivars (Figure 1u). They also have lower TCS1 and MYB184 expression levels compared with modern tea cultivars containing higher levels of caffeine (Figures 1v,w and S2). This further supports the indispensable role of MYB184 in activation of TCS1 gene expression and caffeine biosynthesis in C. sinensis.

In summary, we characterized MYB184 as the major activator of TCS1 and caffeine production in tea plants. An LTR insertion in the MYB184 promoter in wild tea C. ptilophylla explained its low TCS1 expression level and caffeine content. Our study may offer a molecular tool for breeding low-caffeine tea varieties to meet the market demands.



中文翻译:

CsMYB184 调节茶树中咖啡因的生物合成

作为最知名和全球消费的中枢神经系统兴奋剂,咖啡因是一种嘌呤生物碱天然产物,通常来源于茶和咖啡。咖啡因对人体有广泛的健康益处,并且在植物的授粉、抗食草动物攻击和病原体感染方面发挥着至关重要的作用(Zhao et al ., 2020)。虽然已经在茶( Camellia sinensis L)和咖啡植物中广泛研究了咖啡因生物合成途径,但对咖啡因生物合成的调控尚不清楚(Zhao et al ., 2020)。

茶咖啡因合成酶1 ( TCS1 ) 是第一个在茶树中报道的N-甲基转移酶基因,具有负责将可可碱转化为咖啡因的 1- N甲基转移酶活性 (Kato et al ., 2000 )。对茶树种群TCS1结构-活性和TCS1基因遗传变异的研究支持TCS1是咖啡因含量的测定酶(Jin et al ., 2016 ))。为了探索咖啡因生物合成的调控,在由TCS1启动子驱动的荧光素酶报告基因激活系统中筛选了来自加权基因共表达网络分析的 23 个候选转录因子(TF)(图 S1)。MYB184(TEA029017)显示出最高的TCS1启动子激活,达到 4.7 倍(图 1a)。酵母单杂交试验显示 TCS1 启动子的 -828 至 -1670 bp 区域(包含MYBCORE 和融合的 MYB1AT-MYBPLANT)是识别 MYB184 的关键(图 1b)。在植物启动子中,反式激活分析进一步证实了与TCS1结合和激活所需的区域MYB184 的启动子在 -1596 和 -1670 bp 之间(图 1c)。进行 EMSA 测定以进一步验证 MYB184在体外与融合的 MYB1AT-MYBPLANT 基序的结合(图 1d-f)。

详细信息在图片后面的标题中
图1
在图形查看器中打开微软幻灯片软件
CsMYB184 正调控茶树中咖啡因的生物合成。(a)在以海肾萤光素酶为参考的拟南芥原生质体萤光素酶报告基因测定中筛选茶咖啡因合酶( TCS1 ) 启动子与 23 个 TF的反式激活。(b) MYB184 与TCS1启动子结合。基于cis元件的分布,全长TCS1启动子(P1,-1 至 -1670 bp)和三个截短版本,即 P2(-1 至 -1596 bp),P3(-1 至 -828 bp) , 和 P4 (-1 到 -176 bp) 分别被克隆到HIS基因的前面 。(c) MYB184对 TCS1 -P1、-P2、-P3 和 -P4 启动子的启动子激活。(d) 假定的 MYB 结合位点用于 EMSA 测定的TCS1启动子。(e) 从大肠杆菌中纯化的重组 GST-MYB184 融合蛋白。大肠杆菌BL21 细胞。箭头表示目标蛋白。( f ) MYB184 与TCS1启动子结合的 EMSA 测定。竞争对手代表没有生物素标签的假定基序。具有生物素标记基序的不同口粮的竞争者的浓度为 5×、10× 或 50×。箭头表示目标生物素信号。(g) 用 asODN- MYB184处理的茶树茎尖中 MYB184 的下调。(h)与 sODN 相比,MYB184 -KD茶芽尖端的咖啡因生物合成受到抑制。(i) MYB184-KDTCS1的影响茶树芽尖的表达。(j) MYB184在转基因茶毛根中的过表达 ( n  = 4)。(k) 茶树毛状根过表达MYB184 ( MYB184OE ) 和GFP (对照) 的 HPLC 痕量咖啡因。(l,m)与GFP毛根相比,MYB184 的异位表达促进了 MYB184OE根中的咖啡因生物合成(l)和TCS1表达水平(m)。(n) 舒茶早和C幼叶中嘌呤生物碱的 HPLC 分析。百合(KKC)。(o) TCS1的比较KKC等10个品种幼叶的表达水平。SCZ,书茶早;CBL,春波吕;FZ2H,福早尔号;ZC102、中茶102;BHZ,白毫早;ZY,紫妍;ZN117、浙农117;RX,瑞祥,BS,本山;XH,秀红。( p )在 KKC 和 SCZ的TCS1启动子上使用红色框标记的 MYB 结合位点的分布。(q) MYB184和其他 TF 基因在 KKC 和 10 个品种的幼叶中的表达。只有MYB184在 KKC 中显着下调并用红色星号标记。(r) MYB184的倍数变化KKC 和茶品种中的表达水平。(s) KKC 和一些茶品种中 LTR 插入的基于 PCR 的检测。三角形表示 LTR 插入;橙色矩形表示外显子。还标记了用于检测 LTR 插入的正向 (F) 和反向 (R) 引物。( t )在烟叶中验证了来自 KKC 和茶品种(SCZ、ZC102、BHZ、BS)的不同MYB184启动子活性。(u) 茶树品种( n  = 50)和茶科野生茶近缘(包括大理茶、裸子、粗花茶和前叶茶)中的咖啡因含量。(v, w) MYB184 (v) 的表达模式和茶品种和野生茶近缘种中的TCS1 (w)。显示了每次比较的统计显着性(t检验:* P  < 0.05,** P  < 0.01)。引入CsACTINCsGAPDH以标准化表达。

然后,我们检查了 MYB184 在调节茶树中咖啡因合成中的功能。用茶树梢尖进行反义寡脱氧核苷酸 ( asODN ) 干扰实验以敲低MYB184表达 ( MYB184-KD ) (图 1g)。因此,与senseODN对照相比, MYB184-KD芽尖中的咖啡因含量和 TCS1 的表达着降低(图 1h-i)。然而,在茶树转基因毛根系中过表达MYB184 ( MYB184OE ) 显着上调TCS1与野生型根对照相比,转录并因此增加了咖啡因含量(图1j-m)。

KeKecha(Camellia ptilophylla,简称KKC​​)属于Thea科,其咖啡因含量显着降低,但可可碱含量较高(图1n)。尽管先前的一项研究表明,与现代茶品种中的 TCS1 相比,KKC 中的 TCS1 具有较低的 NMT 活性(Jin2016 ),但我们检测到 KKC 中TCS1的表达水平明显低于其他茶品种(图 1o)。为了了解为什么KKC中的 TCS1被下调,我们克隆并比较了TCS1的启动子序列来自 KKC 和 SCZ。然而,启动子序列的比对未显示 MYB 结合位点上的关键 Indel 或 SNP(图 1p)。另一方面,转录组分析显示,KKC 中只有MYB184 的表达水平比其他茶品种显着降低约 14 倍(图 1q,r)。因此,我们提出 KKC 中较低的MYB184转录水平可能是 TCS1 表达水平降低的原因

我们进一步从KKC( proMYB184 KKC )中克隆了MYB184基因的启动子,并将其与其他茶树品种的启动子进行了比较。仅在proMYB184 KKC的 -982 bp 位点发现了一个 437 bp 长的末端重复 (LTR) 插入,但在来自其他茶品种的这些启动子中没有发现,正如MYB184启动子克隆和用特异性 PCR 引物检测所证实的那样LTR 插入(图 1s)。在茶树中,基因中的 LTR 插入通常会导致基因表达受到抑制(Xia et al ., 2020 ),这可能解释了 KKC 中MYB184的表达水平低于其他茶品种。的确,GUS报告基因分析表明,具有 LTR 插入的proMYB184 KKC的启动子活性明显低于来自茶品种的四个没有 LTR 插入的代表性启动子(图 1t)。因此,我们得出结论,在 MYB184 的启动子中插入 LTR导致MYB184 表达受到抑制导致TCS1转录水平降低,从而降低 KKC 中的咖啡因含量。

为了将 TCS1 的 MYB184 激活扩展到其他山茶属物种,我们检查了其他几种野生茶近缘植物,这些近缘植物已知与现代茶品种相比含有显着较低水平的咖啡因(图 1u)。与含有较高水平咖啡因的现代茶品种相比,它们还具有较低的TCS1MYB184表达水平(图 1v、w 和 S2)。这进一步支持了 MYB184 在 C. sinensis 中 TCS1 基因表达和咖啡因生物合成的激活中不可或缺作用。

总之,我们将 MYB184 定性为茶树中 TCS1 和咖啡因生产的主要激活。野生茶C中MYB184启动子中的 LTR 插入。ptilophylla解释了它的低TCS1表达水平和咖啡因含量。我们的研究可能为培育低咖啡因茶品种以满足市场需求提供分子工具。

更新日期:2022-03-25
down
wechat
bug