当前位置: X-MOL 学术Nat. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues
Nature Biomedical Engineering ( IF 26.8 ) Pub Date : 2022-03-24 , DOI: 10.1038/s41551-022-00856-8
Mark A Skylar-Scott 1, 2, 3, 4 , Jeremy Y Huang 1, 2, 5 , Aric Lu 1, 2, 6 , Alex H M Ng 1, 5 , Tomoya Duenki 1, 2 , Songlei Liu 1, 5 , Lucy L Nam 1, 2 , Sarita Damaraju 1, 2 , George M Church 1, 5 , Jennifer A Lewis 1, 2
Affiliation  

The generation of organoids and tissues with programmable cellular complexity, architecture and function would benefit from the simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types. Yet differentiation protocols for the overexpression of specific transcription factors typically produce a single cell type. Here we show that patterned organoids and bioprinted tissues with controlled composition and organization can be generated by simultaneously co-differentiating hiPSCs into distinct cell types via the forced overexpression of transcription factors, independently of culture-media composition. Specifically, we used such orthogonally induced differentiation to generate endothelial cells and neurons from hiPSCs in a one-pot system containing either neural or endothelial stem-cell-specifying media, and to produce vascularized and patterned cortical organoids within days by aggregating inducible-transcription-factor and wild-type hiPSCs into randomly pooled or multicore-shell embryoid bodies. Moreover, by leveraging multimaterial bioprinting of hiPSC inks without extracellular matrix, we generated patterned neural tissues with layered regions composed of neural stem cells, endothelium and neurons. Orthogonally induced differentiation of stem cells may facilitate the fabrication of engineered tissues for biomedical applications.



中文翻译:

正交诱导干细胞分化用于血管化类器官和生物打印组织的程序化模式化

具有可编程细胞复杂性、结构和功能的类器官和组织的产生将受益于人类诱导多能干细胞 (hiPSC) 向不同细胞类型的同时分化。然而,用于特定转录因子过表达的分化方案通常会产生单一细胞类型。在这里,我们展示了具有受控组成和组织的图案化类器官和生物打印组织可以通过强制过度表达转录因子同时将 hiPSC 共分化为不同的细胞类型来生成,而与培养基组成无关。具体来说,我们使用这种正交诱导分化在包含神经或内皮干细胞指定培养基的一锅系统中从 hiPSC 生成内皮细胞和神经元,并通过将诱导转录因子和野生型 hiPSC 聚集到随机汇集或多核壳胚状体中,在几天内产生血管化和图案化的皮质类器官。此外,通过利用没有细胞外基质的 hiPSC 墨水的多材料生物打印,我们生成了具有由神经干细胞、内皮和神经元组成的分层区域的图案化神经组织。正交诱导的干细胞分化可能有助于制造用于生物医学应用的工程组织。我们生成了具有由神经干细胞、内皮细胞和神经元组成的分层区域的图案化神经组织。正交诱导的干细胞分化可能有助于制造用于生物医学应用的工程组织。我们生成了具有由神经干细胞、内皮细胞和神经元组成的分层区域的图案化神经组织。正交诱导的干细胞分化可能有助于制造用于生物医学应用的工程组织。

更新日期:2022-03-24
down
wechat
bug