当前位置: X-MOL 学术Hydrogeol. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laboratory experimental study on pumping-induced earth fissures
Hydrogeology Journal ( IF 2.4 ) Pub Date : 2022-03-15 , DOI: 10.1007/s10040-022-02473-w
Yun Zhang 1 , Guofeng He 1 , Jichun Wu 1 , Jun Yu 2 , Xulong Gong 2
Affiliation  

The mechanisms associated with pumping-induced earth fissures have so far been unclear. To gain an insight into the mechanisms, a physical model test was conducted, which included a pumping well and a ridge of bedrock. There were two soil layers in the model box—the lower one was sand and the upper one was silty clay. When groundwater was pumped through the system, both pore-water pressure change and soil deformation were found to be three-dimensional. The pore-water pressure in the pumped sand layer decreased rapidly when pumping started, while that in the neighboring clay layer increased in the early pumping time and then gradually decreased with pumping. The bedrock ridge hindered water in the sand layer from flowing towards the pumping well and reduced water replenishment from a constant head boundary, resulting in an unusual distribution of pore-water pressure. The vertical compaction of the clay layer changed with different sites, and the greatest occurred over the bedrock ridge. The greatest vertical strain occurred in the zone between the pumping well and bedrock ridge, as did the maximum surface horizontal displacement and horizontal strain within the soils. The number and the size of fissures increased with pumping. Earth fissures mainly developed in the area between the pumping well and the projection of the bedrock ridge, and most fissures trended approximately in parallel with the ridge. The pumping-induced fissures result mainly from the failure caused by differential horizontal and vertical soil deformation due to pumping and bedrock upheaval.



中文翻译:

抽水诱发地裂缝的室内试验研究

迄今为止,与抽水诱发的地裂缝相关的机制尚不清楚。为了深入了解这些机制,进行了物理模型测试,其中包括一个抽水井和一个基岩脊。模型箱内有两层土,下层为沙土,上层为粉质粘土。当地下水被抽入系统时,孔隙水压力变化和土壤变形都是三维的。抽水开始时抽水砂层孔隙水压力迅速下降,而相邻粘土层孔隙水压力在抽水初期逐渐增大,然后随着抽水逐渐减小。基岩脊阻碍了砂层中的水流向抽水井,减少了恒定水头边界的补水,导致孔隙水压力分布异常。粘土层的垂直压实度随场地的不同而变化,以基岩山脊上的压实度最大。最大垂直应变发生在抽水井和基岩脊之间的区域,最大地表水平位移和土壤内的水平应变也是如此。裂缝的数量和大小随着抽水而增加。地裂缝主要发育在抽水井与基岩脊投影之间的区域,大部分地裂缝与山脊大致平行。抽水裂缝主要是由于抽水和基岩隆起引起的水平和垂直土壤变形差异引起的破坏。最大的发生在基岩山脊上。最大垂直应变发生在抽水井和基岩脊之间的区域,最大地表水平位移和土壤内的水平应变也是如此。裂缝的数量和大小随着抽水而增加。地裂缝主要发育在抽水井与基岩脊投影之间的区域,大部分地裂缝与山脊大致平行。抽水裂缝主要是由于抽水和基岩隆起引起的水平和垂直土壤变形差异引起的破坏。最大的发生在基岩山脊上。最大垂直应变发生在抽水井和基岩脊之间的区域,最大地表水平位移和土壤内的水平应变也是如此。裂缝的数量和大小随着抽水而增加。地裂缝主要发育在抽水井与基岩脊投影之间的区域,大部分地裂缝与山脊大致平行。抽水裂缝主要是由于抽水和基岩隆起引起的水平和垂直土壤变形差异引起的破坏。土壤中的最大表面水平位移和水平应变也是如此。裂缝的数量和大小随着抽水而增加。地裂缝主要发育在抽水井与基岩脊投影之间的区域,大部分地裂缝与山脊大致平行。抽水裂缝主要是由于抽水和基岩隆起引起的水平和垂直土壤变形差异引起的破坏。土壤中的最大表面水平位移和水平应变也是如此。裂缝的数量和大小随着抽水而增加。地裂缝主要发育在抽水井与基岩脊投影之间的区域,大部分地裂缝与山脊大致平行。抽水裂缝主要是由于抽水和基岩隆起引起的水平和垂直土壤变形差异引起的破坏。

更新日期:2022-03-15
down
wechat
bug