当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of SiC Nanoparticles in Carbon Network by Pulsed Electrical Discharges in Liquid Hexamethyldisilazane with Gaseous Bubbles
Plasma Chemistry and Plasma Processing ( IF 2.6 ) Pub Date : 2022-03-12 , DOI: 10.1007/s11090-022-10243-5
Ahmad Hamdan 1 , Min Suk Cha 2
Affiliation  

Discharges in liquid can efficiently produce nanoparticles via electrode erosion and (or) liquid decomposition. Although in-liquid spark discharges promote the erosion of electrodes, the injection of bubbles may enhance plasma-liquid interactions. In this study, we investigate the materials produced by sustaining pulsed discharges in liquid hexamethyldisilazane with injected Ar, He, or N2 gas bubbles. The electrical characteristics of the discharges are analyzed, and variations are detected between the materials produced using Ar or He gases and using N2. The behavior of the liquid medium after synthesis also exhibits differences, depending on the nature of the gaseous bubbles. For instance, the particles produced with Ar and He are rapidly (within hours) sedimented in the liquid medium, but those produced with N2 remain in suspension for several weeks. FTIR, Raman, TEM, and UV–Vis analyses show that the synthesized materials consist of SiC nanoparticles (~ 10 nm diameter) embedded in a hydrogenated carbonaceous structure with short-range order (~ 2 to 4 nm). O and N are detected in the structure, which indicates that the composition of the particles’ surface is complex. When the particles are heated at 600° C in air for 4 h, crystalline structures with a higher percentage of O and lower percentages of C and N are formed.



中文翻译:

带气泡的液态六甲基二硅氮烷中脉冲放电制备碳网络中的 SiC 纳米颗粒

液体中的放电可以通过电极腐蚀和(或)液体分解有效地产生纳米颗粒。尽管液体内火花放电会促进电极的腐蚀,但气泡的注入可能会增强等离子体-液体的相互作用。在这项研究中,我们研究了通过在注入 Ar、He 或 N 2气泡的液体六甲基二硅氮烷中维持脉冲放电产生的材料。分析放电的电特性,并检测使用 Ar 或 He 气体和使用 N 2生产的材料之间的变化. 合成后液体介质的行为也表现出差异,这取决于气泡的性质。例如,用 Ar 和 He 产生的颗粒会迅速(在几小时内)沉降在液体介质中,但用 N 2产生的颗粒会保持悬浮状态数周。FTIR、拉曼、TEM 和 UV-Vis 分析表明,合成材料由嵌入氢化碳质结构的 SiC 纳米颗粒(直径约 10 nm)组成,具有短程有序(约 2 至 4 nm)。在结构中检测到O和N,这表明颗粒表面的成分是复杂的。当颗粒在空气中在 600°C 下加热 4 小时时,形成具有较高百分比的 O 和较低百分比的 C 和 N 的晶体结构。

更新日期:2022-03-12
down
wechat
bug