当前位置: X-MOL 学术Energy Environ. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic Coupling of Single Atom and FePS3 Boosts Water Electrolysis
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2021-04-29 , DOI: 10.1002/eem2.12205
Chongyang Tang 1 , Dong He 1 , Nan Zhang 2 , Xianyin Song 1 , Shuangfeng Jia 1 , Zunjian Ke 1 , Jiangchao Liu 1 , Jianbo Wang 1 , Changzhong Jiang 1 , Ziyu Wang 3 , Xiaoqing Huang 4 , Xiangheng Xiao 1
Affiliation  

Engineering the electronic structure of surface active sites at the atomic level can be an efficient way to modulate the reactivity of catalysts. Herein, we report the rational tuning of surface electronic structure of FePS3 nanosheets (NSs) by anchoring atomically dispersed metal atom. Theoretical calculations predict that the strong electronic coupling effect in single-atom Ni-FePS3 facilitates electron aggregation from Fe atom to the nearby Ni-S bond and enhances the electron-transfer of Ni and S sites, which balances the oxygen species adsorption capacity, reinforces water adsorption and dissociation process to accelerate corresponding oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The optimal Ni-FePS3 NSs/C exhibits outstanding electrochemical water-splitting activities, delivering an overpotential of 287 mV at the current density of 10 mA cm−2 and a Tafel slope of 41.1 mV dec−1 for OER; as well as an overpotential decrease of 219 mV for HER compared with pure FePS3 NSs/C. The concept of electronic coupling interaction between the substrate and implanted single active species offers an additional method for catalyst design and beyond.

中文翻译:

单原子和 FePS3 的电子耦合促进水电解

在原子水平上设计表面活性位点的电子结构可能是调节催化剂反应性的有效方法。在此,我们报告了通过锚定原子分散的金属原子来合理调整 FePS 3纳米片 (NS) 的表面电子结构。理论计算预测,单原子 Ni-FePS 3中的强电子耦合效应有利于电子从 Fe 原子聚集到附近的 Ni-S 键,增强 Ni 和 S 位点的电子转移,从而平衡了氧物种的吸附能力,加强水的吸附和解离过程以加速相应的析氧反应(OER)和析氢反应(HER)。最佳 Ni-FePS 3NSs/C 表现出出色的电化学水分解活性,在 10 mA cm -2的电流密度和 41.1 mV dec -1的 OER的 Tafel 斜率下提供 287 mV 的过电位;与纯 FePS 3 NSs/C 相比,HER 的过电位降低了 219 mV。衬底和注入的单个活性物质之间的电子耦合相互作用的概念为催化剂设计及其他方面提供了另一种方法。
更新日期:2021-04-29
down
wechat
bug