当前位置: X-MOL 学术Soil Tillage Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parametric analysis and numerical optimisation of Jerusalem artichoke vibrating digging shovel using discrete element method
Soil and Tillage Research ( IF 6.1 ) Pub Date : 2022-02-25 , DOI: 10.1016/j.still.2022.105344
Emmanuel Awuah 1 , Jun Zhou 1 , Zian Liang 1 , Kojo Atta Aikins 2 , Bertrand Vigninou Gbenontin 1 , Peter Mecha 1 , Nelson Richard Makange 1
Affiliation  

Commercial potato harvester is inefficient in harvesting Jerusalem artichokes due to the vast development area of tubers in the soil and the wide-ranging sizes and shapes, some growing up to a depth of about 35 cm. Harvesting artichoke tubers, mainly at such deep depth, is problematic, necessitating optimisation of parameters for the harvesting operations to account for the effect of soil-tool dynamics on the digging performance. However, vibration can substantially reduce soil reaction forces and increase the soil-crushing effect, improving harvesters’ production efficiency. Therefore, the effect of travel speed, vibration frequency, amplitude, and rake angle and the shovel geometry on soil reaction forces, drawbar power, and Archard wear were studied using the discrete element method (DEM) and response surface methodology (RSM) at a targeted shovel’s operating depth of 35 cm. Laboratory experiments of the static angle of repose and cone penetration tests were successfully used to calibrate the soil model using multi-sphere particles. Also, Design-Expert® Software (2021) version 13 was used to determine the optimised geometry design and operating parameters values from the soil-to-shovel interaction simulation based on numerical optimisation and desirability functions procedure. Two optimal solutions were obtained, with the first one having 0.556 m s− 1 speed, 13.864 Hz frequency, 20 mm amplitude, 15˚ rake angle, and S-shape geometry. Contrariwise, the second solution was at the same geometry design with 1.111 m s− 1 speed, 20.300 Hz, 20 mm amplitude, 15˚ rake angle. Analysis of variance showed that all the individual factors influenced draught force, vertical force, and drawbar power. However, only frequency, amplitude, and geometry design significantly influenced Archard wear. Soil reaction forces increased with increasing speed. Vibration significantly affected soil reaction forces by reducing draught force and vertical force by 43.61% and 36.67%. DEM and RSM are effective techniques for designing and optimising soil-engaging implements.



中文翻译:

菊芋振动挖掘铲的离散元参数分析与数值优化

商业马铃薯收割机在收割菊芋方面效率低下,因为块茎在土壤中的发育面积很大,而且大小和形状范围很广,有些长到约 35 厘米的深度。主要在如此深的深度收获朝鲜蓟块茎是有问题的,需要优化收获操作的参数,以考虑土壤工具动力学对挖掘性能的影响。然而,振动可以显着降低土壤反作用力并增加土壤破碎效果,从而提高收割机的生产效率。因此,行进速度、振动频率、振幅和前角以及铲几何形状对土壤反作用力、牵引杆功率、使用离散元法 (DEM) 和响应面法 (RSM) 在目标铲的 35 cm 工作深度研究了 Archard 和 Archard 磨损。静态休止角和锥形穿透试验的实验室实验成功地用于校准使用多球体粒子的土壤模型。此外,Design-Expert® 软件 (2021) 版本 13 用于确定优化的几何设计和操作参数值,该值来自基于数值优化和期望函数程序的土与铲相互作用模拟。获得了两个最优解,第一个具有 0.556 m s Design-Expert® 软件 (2021) 版本 13 用于确定优化的几何设计和操作参数值,该值来自基于数值优化和期望函数程序的土与铲相互作用模拟。获得了两个最优解,第一个具有 0.556 m s Design-Expert® 软件 (2021) 版本 13 用于确定优化的几何设计和操作参数值,该值来自基于数值优化和期望函数程序的土与铲相互作用模拟。获得了两个最优解,第一个具有 0.556 m s− 1种速度、13.864 Hz 频率、20 mm 幅度、15˚ 前角和 S 形几何形状。相反,第二种解决方案采用相同的几何设计,速度为 1.111 m s - 1,频率为 20.300 Hz,振幅为 20 mm,前角为 15˚。方差分析表明,所有个体因素都会影响吃水力、垂直力和牵引力。然而,只有频率、振幅和几何设计显着影响了 Archard 磨损。土壤反作用力随着速度的增加而增加。振动显着影响土壤反作用力,使拔模力和垂直力分别降低 43.61% 和 36.67%。DEM 和 RSM 是设计和优化土壤接合工具的有效技术。

更新日期:2022-02-25
down
wechat
bug