当前位置: X-MOL 学术Phys. Rev. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring the sky localization and early warning capabilities of third generation gravitational wave detectors in three-detector network configurations
Physical Review D ( IF 4.6 ) Pub Date : 2022-02-15 , DOI: 10.1103/physrevd.105.043010
Yufeng Li 1, 2, 3 , Ik Siong Heng 3 , Man Leong Chan 4 , Chris Messenger 3 , Xilong Fan 5
Affiliation  

This work characterizes the sky localization and early warning performance of different networks of third generation gravitational wave detectors, consisting of different combinations of detectors with either the Einstein Telescope or Cosmic Explorer configuration in sites in North America, Europe, and Australia. Using a Fisher matrix method which includes the effect of earth rotation, we estimate the sky localization uncertainty for 1.4M1.4M binary neutron star mergers at distances 40, 200, 400, 800, and 1600 Mpc, to characterize each network’s performance for binary neutron star observations at a given distance. We also characterize each network’s sky localization capability for an assumed astrophysical population up to redshift 2. Furthermore, we also study the capabilities for the different networks to localize a binary neutron star merger prior to merger (early warning) and characterize the network performance for sky localization uncertainty between 1 and 30 square degrees. We find that, for example, for binary neutron star mergers at 200 Mpc and a network consisting of the Einstein Telescope, Cosmic Explorer, and an extra Einstein Telescope-like detector in Australia (2ET1CE), the upper limit of the size of the 90% credible region for the best localized 90% signals is 0.25deg2. For the simulated astrophysical distribution this upper limit is 91.79deg2. If the Einstein Telescope-like detector in Australia is replaced with a Cosmic Explorer-like detector (1ET2CE), for signals at 200 Mpc, the size of the 90% credible region for the best localized 90% signals is 0.18deg2, while the corresponding value for the best localized 90% sources following the astrophysical distribution is 56.77deg2. We note that the 1ET2CE network can detect 7.2% more of the simulated astrophysical population than the 2ET1CE network. In terms of early warning performance (e.g., 200 Mpc), we find that a network of 2ET1CE and 1ET2CE networks can both provide early warnings of the order of one hour prior to merger with sky localization uncertainties of 30 square degrees or less. In some cases, the 2ET1CE network is capable of estimating the sky location with an uncertainty of five square degrees or less on timescales of about one hour prior to merger. Our study concludes that the 1ET2CE network is a good compromise between binary neutron stars detection rate, sky localization, and early warning capabilities.

中文翻译:

三探测器网络配置下第三代引力波探测器天空定位预警能力探索

这项工作描述了第三代引力波探测器不同网络的天空定位和预警性能,由北美、欧洲和澳大利亚站点的探测器与爱因斯坦望远镜或宇宙探测器配置的不同组合组成。使用包含地球自转影响的 Fisher 矩阵方法,我们估计天空定位的不确定性1.41.4距离为 40、200、400、800 和 1600 Mpc 的双中子星合并,以表征每个网络在给定距离对双中子星观测的性能。我们还描述了每个网络的天空定位能力,对于假设的天体物理种群高达红移2. 此外,我们还研究了不同网络在合并之前定位双中子星合并(预警)的能力,并描述了天空定位不确定性在 1 到 30 平方度之间的网络性能。我们发现,例如,对于 200 Mpc 的双中子星合并和由爱因斯坦望远镜、宇宙探索者和澳大利亚额外的类似爱因斯坦望远镜的探测器 (2ET1CE) 组成的网络,90 的大小上限最佳本地化 90% 信号的 % 可信区域是0.252. 对于模拟的天体物理分布,这个上限是91.792. 如果将澳大利亚的类似爱因斯坦望远镜的探测器替换为类似宇宙探测器的探测器 (1ET2CE),对于 200 Mpc 的信号,最佳局部 90% 信号的 90% 可信区域的大小为0.182,而根据天体物理分布的最佳局部 90% 源的相应值是56.772. 我们注意到 1ET2CE 网络比 2ET1CE 网络可以多检测 7.2% 的模拟天体物理人口。在预警性能方面(例如,200 Mpc),我们发现 2ET1CE 和 1ET2CE 网络都可以提供合并前一小时量级的预警,天空定位不确定性为 30 平方度或更小。在某些情况下,2ET1CE 网络能够在合并前约一小时的时间尺度上以 5 平方度或更小的不确定性估计天空位置。我们的研究得出结论,1ET2CE 网络是双中子星探测率、天空定位和预警能力之间的良好折衷。
更新日期:2022-02-15
down
wechat
bug