当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co/Li-dual-site doping towards LiCoO2 as a high-voltage, fast-charging, and long-cycling cathode material
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2022-01-27 , DOI: 10.1039/d1ta10612k
Shou-Xiao Chen 1 , Chuan-Wei Wang 1 , Yao Zhou 1 , Jun-Ke Liu 1 , Chen-Guang Shi 2 , Guo-Zhen Wei 3 , Bao-Yi Yin 4 , Hao-Tian Deng 1 , Si-Yu Pan 1 , Ming-Jia Guo 2 , Wei-Chen Zheng 2 , Hao-Zhi Wang 5 , You-Hong Jiang 2 , Ling Huang 2 , Hong-Gang Liao 2 , Jun-Tao Li 1 , Shi-Gang Sun 2
Affiliation  

The design of fast-charging, long-cycling, and high-voltage cathode materials remains challenging. Herein, through different strategies, Al and Nb/W are doped into the Co- and Li-sites in LiCoO2 (LCO), respectively; according to density functional theory calculations, compared with the Co-site, doping at Li-site is thermodynamically unfavourable, which is primarily driven by the kinetic motif. We demonstrate that the Al-dopant at the Co-site inhibits the adverse phase transformation of LiCoO2 under high voltage, while the Nb/W dopants intercalated within the Li-slab can serve as pillars that not only increase the interlayer spacing but also decrease the electronic coupling around Li+, thus increasing the population of highly active Li+ and enabling fast Li+ diffusion kinetics. Owing to the synergy effect from dual-site doping at both Co- and Li-sites, together with a discrete coating layer of niobium tungsten oxide (NWO) nanoparticles, the thus modified LiCoO2 (denoted as ANW-LCO) cathode delivers highly stable and superior rate performance even under high voltage. Specifically, with a cut-off potential of 4.5 V, it displays a specific capacity of as high as 142.1 mA h g−1 at 15C and can maintain a reversible capacity of 85.3 mA h g−1 after 1000 cycles at 10C under 4.5 V, translating into a capacity retention of 60.4%. When evaluated at 4.6 V, it shows a capacity retention of as high as 77.5% after 100 cycles. When tested in all-solid-state lithium-ion batteries, it delivers a primal discharge specific capacity of 139 mA h g−1 and retains 71% of its capacity after 200 cycles. The full-cell also demonstrates outstanding cycling stability, with a capacity retention of 71% after 500 cycles at 2C.

中文翻译:

Co/Li双位点掺杂LiCoO2作为高压、快速充电和长循环正极材料

快速充电、长循环和高压正极材料的设计仍然具有挑战性。在此,通过不同的策略,Al和Nb/W分别被掺杂到LiCoO 2 (LCO)中的Co位和Li位中;根据密度泛函理论计算,与Co-位点相比,Li-位点的掺杂在热力学上是不利的,这主要是由动力学基序驱动的。我们证明了 Co-site 处的 Al 掺杂剂抑制了 LiCoO 2在高压下的不利相变,而嵌入 Li 板坯中的 Nb/W 掺杂剂可以作为柱子,不仅增加层间距,而且减少Li +周围的电子耦合,从而增加了高活性 Li +的数量并实现快速的 Li +扩散动力学。由于在 Co 位和 Li 位的双位掺杂的协同效应,以及铌钨氧化物 (NWO) 纳米粒子的离散涂层,因此改性的 LiCoO 2 (表示为 ANW-LCO) 阴极可提供高度稳定即使在高电压下也具有出色的倍率性能。具体来说,截止电位为 4.5 V,它在 15C 时显示出高达 142.1 mA hg -1的比容量,并且可以保持 85.3 mA hg -1的可逆容量在 10C、4.5 V 下 1000 次循环后,容量保持率为 60.4%。在 4.6 V 下评估时,100 次循环后的容量保持率高达 77.5%。在全固态锂离子电池中进行测试时,它提供 139 mA hg -1的原始放电比容量,并在 200 次循环后保持其容量的 71%。全电池还表现出出色的循环稳定性,在 2C 下循环 500 次后容量保持率为 71%。
更新日期:2022-01-27
down
wechat
bug