当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance assessment of lift-based turbine for small-scale power generation in water pipelines using OpenFOAM
Engineering Applications of Computational Fluid Mechanics ( IF 5.9 ) Pub Date : 2022-02-07 , DOI: 10.1080/19942060.2021.2019129
Ghada Diab 1 , Mohamed Elhakeem 1, 2 , Ahmed M.A. Sattar 3
Affiliation  

In-pipe water turbines have begun to gain interest for harvesting power on a small scale from pipe networks. However, few studies have addressed the feasibility of installing spherical lift-based helical-bladed turbines in a water supply network. Points such as the pressure drop and generated power remain unexplored. In this study, a three-dimensional numerical model, based on OpenFOAM, is used to investigate the performance of the spherical lift-based helical-bladed in-pipe water turbine. The study aims to evaluate how the geometric properties of this turbine affect its performance in terms of power and efficiency, and the hydraulics of pipe flow in terms of pressure drop. The study considers a turbine of diameter 600 mm, with the following geometric properties: number of helical blades 3, 4 and 5; blade chord length 10%, 15% and 20% of turbine diameter D; blade helicity 0°, 60° and 120°; and pitch angle −6°, −3°, 0° and 3°. These parameters are analyzed at tip speed ratios (TSRs) of 2, 3 and 4. The results show that the five-blade turbine yields a power of 1300 W, while the three-blade turbine yields only 870 W, at an optimum TSR of 3. A change in the chord length of 50% (from 0.10D to 0.15D) increases the turbine power by 88.4% and efficiency by 40% for the same TSR. A further change to 0.20D gives no significant improvement in efficiency or power output. An increase in the helical angle from 0° to 120° results in a 22.8% reduction in turbine power. The turbine achieves the maximum power output of 1350 W at zero pitch angle, with a corresponding efficiency of 27%. The maximum head loss observed is 1.6 m, which represents 2.7% of the total head in the pipe. Solidity has a more pronounced effect on head losses than helicity and pitch angle.



中文翻译:

使用 OpenFOAM 对输水管道中基于升力的涡轮机进行小规模发电的性能评估

管道内的水轮机已经开始引起人们对从管网进行小规模发电的兴趣。然而,很少有研究涉及在供水网络中安装基于球形升力的螺旋叶片涡轮机的可行性。诸如压降和发电功率等点仍未探索。在这项研究中,基于 OpenFOAM 的三维数值模型用于研究基于球形升力的螺旋叶片管内水轮机的性能。该研究旨在评估该涡轮机的几何特性如何影响其功率和效率方面的性能,以及管道流动的压降方面的水力学。该研究考虑了一个直径为 600 毫米的涡轮机,具有以下几何特性:螺旋叶片的数量为 3、4 和 5;叶片弦长 10%,涡轮直径 D 的 15% 和 20%;叶片螺旋度 0°、60° 和 120°;和俯仰角-6°、-3°、0°和3°。这些参数在叶尖速比 (TSR) 为 2、3 和 4 时进行分析。结果表明,五叶片涡轮机的功率为 1300 W,而三叶片涡轮机的功率仅为 870 W,最佳 TSR 为3. 弦长 50% 的变化(从 0.10D 到 0.15D)在相同的 TSR 下增加了 88.4% 的涡轮机功率和 40% 的效率。进一步更改为 0.20D 不会显着提高效率或功率输出。螺旋角从 0° 增加到 120° 会导致涡轮功率降低 22.8%。该涡轮机在零桨距角下实现了1350 W的最大功率输出,相应的效率为27%。观察到的最大水头损失为 1.6 m,占管道总水头的 2.7%。

更新日期:2022-02-08
down
wechat
bug