当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preferentially engineering edge–nitrogen sites in porous hollow spheres for ultra–fast and reversible potassium storage
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-01-21 , DOI: 10.1016/j.cej.2022.134821
Siyan Jin 1 , Pei Liang 2 , Yuting Jiang 1 , Huihua Min 3 , Mengmeng Niu 4 , Hao Yang 1 , Rongguo Zhang 1 , Jiaxu Yan 4 , Xiaodong Shen 1 , Jin Wang 1
Affiliation  

Hard carbons have been regarded as potential anode materials for potassium ion batteries due to their superior merits of low cost, good chemical stability, and adjustable structure. However, hard carbons still suffer from the sluggish kinetics and large volume expansion during potassiation/depotassiation processes. Edge–nitrogen doping has been demonstrated an effective strategy to solve these issues. Currently, the low portion of edge–nitrogen sites restricts K+ adsorption ability of hard carbons. Herein, we preferentially engineer edge–nitrogen sites with a high portion of 85.6% in hollow porous carbon spheres, through structure engineering combined with dual doping. The as–developed anode materials possess unique interior void space and various nanoscale curvature, preferentially exposing rich edge–nitrogen sites. Additional phosphorus doping modulates valence bands of edge–nitrogen sites, advantageous for generating a large fraction of edge sites. The edge dominated nitrogen species confer strong K+ adsorption capability, thus contributing a rapid surface–controlled potassium adsorption process. Consequently, the as–prepared hollow porous N,P–codoped carbon spheres exhibit comparable reversible capacities, outstanding rate performance (193.0 mAh g−1 at 4 A g−1), and stable cycling ability (137.6 mAh g−1 at 2 A g−1 after 1500 cycles). Ex operando Raman, XRD and DFT calculations reveal the stable structure, reinforced K+ adsorption ability and modulated band structure. Our work provides an efficient path to engineer active edge sites in carbon materials and boost potassium storage.



中文翻译:

优先设计多孔空心球中的边缘-氮位点,用于超快速和可逆的钾存储

硬碳因其成本低、化学稳定性好、结构可调等优点而被视为钾离子电池的潜在负极材料。然而,硬碳在钾化/去钾化过程中仍然存在动力学缓慢和体积膨胀大的问题。边缘氮掺杂已被证明是解决这些问题的有效策略。目前,边缘-氮位点的低部分限制了 K +硬碳的吸附能力。在这里,我们通过结构工程与双掺杂相结合,优先在空心多孔碳球中设计出高达 85.6% 的边缘-氮位点。所开发的负极材料具有独特的内部空隙空间和各种纳米级曲率,优先暴露丰富的边缘-氮位点。额外的磷掺杂调节边缘-氮位点的价带,有利于产生大部分边缘位点。边缘占主导地位的氮物种具有很强的 K +吸附能力,从而有助于快速的表面控制的钾吸附过程。因此,所制备的中空多孔 N,P 共掺杂碳球表现出相当的可逆容量,出色的倍率性能(193.0 mAh g -1在 4 A g -1下)和稳定的循环能力(1500 次循环后在 2 A g -1下为 137.6 mAh g -1 )。操作拉曼、XRD 和 DFT 计算揭示了稳定的结构、增强的 K +吸附能力和调制带结构。我们的工作为在碳材料中设计活性边缘位点和促进钾储存提供了一条有效途径。

更新日期:2022-01-30
down
wechat
bug