当前位置: X-MOL 学术Int. J. Damage Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of ply position switching in quasi-isotropic glass fibre reinforced polymer composite subjected to low velocity impact
International Journal of Damage Mechanics ( IF 4.2 ) Pub Date : 2022-01-20 , DOI: 10.1177/10567895211068176
KK Singh 1 , Mahesh 1
Affiliation  

This paper reports the influence of woven (0°/90°) and (±45°) lamina position interchanging about the midplane in an eight-layered quasi-isotropic glass fibre reinforced polymer (GFRP) composite under low velocity impact (LVI). In order to fabricate GFRP composite, two lamina orientations as (0°/90°) (referred as ‘a’) and (±45°) (referred as ‘c’) arranged in different stacking sequences. Three number of sample groups as (i) sandwiched ([aacc]S and [ccaa]S) (ii) intercalated ([acca]S and [caac]S) and (iii) alternate ([acac]S and [caca]S) resulted in six number of stacking sequences. The drop weight impact tests are performed at two incident velocities as 1.5 and 4 m/s. The corresponding impact energies generated are 11.39 and 81.05 J, respectively. The impact velocity 1.5 m/s created the barely visible impact damage (BVID) in the GFRP composite, while the impact velocity 4 m/s perforated the GFRP composite. The experimental results showed that the intercalated laminate design with four mismatching interfaces (i.e., [acca]S), offered better impact resistance than two other designs with two and six angle mismatching interfaces. It is also perceived that the impact response (maximum peak load, maximum impact energy and minimum impactor displacement) was independent of the number of angles of mismatching interfaces. Moreover, low velocity impact response of a quasi-isotropic GFRP composite depends on the balanced lamina position about the midplane in the laminate. Experimental results for maximum peak load, maximum energy absorption and laminate displacement proved the significance of conventional designing methodology. Further, the impactor displacement value at maximum peak load and the landing displacement value of the descending portion of the force-displacement curve after reaching the maximum peak load proved to be a practical approach along with the use of determinant of the bending stiffness matrix in determining the better performing stacking sequences for a quasi-isotropic GFRP composite made of (0°/90°) and (±45°) plies under LVI.



中文翻译:

准各向同性玻璃纤维增​​强聚合物复合材料低速冲击下层位转换的影响

本文报道了在低速冲击 (LVI) 下,在八层准各向同性玻璃纤维增​​强聚合物 (GFRP) 复合材料中,编织 (0°/90°) 和 (±45°) 薄层位置围绕中平面交换的影响。为了制造 GFRP 复合材料,两个薄片方向(0°/90°)(称为“a”)和(±45°)(称为“c”)以不同的堆叠顺序排列。三个样本组,如 (i) 夹层 ([aacc] S和 [ccaa] S ) (ii) 插层 ([acca] S和 [caac] S ) 和 (iii) 交替 ([acac] S和 [caca]小号) 产生了六个堆叠序列。落锤冲击测试在两个入射速度下进行,分别为 1.5 和 4 m/s。产生的相应冲击能量分别为 11.39 和 81.05 J。1.5 m/s 的冲击速度在 GFRP 复合材料中产生了几乎不可见的冲击损伤 (BVID),而 4 m/s 的冲击速度使 GFRP 复合材料穿孔。实验结果表明,具有四个不匹配界面(即 [acca] S),与其他两种具有两个和六个角度失配接口的设计相比,提供了更好的抗冲击性。还认为冲击响应(最大峰值载荷、最大冲击能量和最小冲击器位移)与不匹配界面的角度数无关。此外,准各向同性 GFRP 复合材料的低速冲击响应取决于层压板中平面周围的平衡层板位置。最大峰值载荷、最大能量吸收和层压板位移的实验结果证明了传统设计方法的重要性。进一步,

更新日期:2022-01-20
down
wechat
bug