当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile fabrication of ZnO decorated ZnFe-layered double hydroxides @ biochar nanocomposites for synergistic photodegradation of tetracycline under visible light
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2022-01-20 , DOI: 10.1016/j.cej.2022.134772
Mengxue Li 1, 2 , Peng Li 3 , Li Zhang 4 , Mengmeng Chen 5 , Juanjuan Tang 1, 2 , Caidie Qin 1, 2 , Stephanie Ling Jie Lee 1, 2 , Sijie Lin Project design 1, 2
Affiliation  

To explore effective treatment of antibiotics-contaminated water using visible light-responsive photocatalyst, a series of ZnO decorated ZnFe-layered double hydroxide @ biochar (ZnO/ZnFe-LDH@BC) nanocomposites were obtained via a facile hydrothermal method. The fabricated nanocomposites exhibited uniform distribution of ZnO/ZnFe-LDH on BC matrix, allowing more active sites of ZnO/ZnFe-LDH to be utilized. The BC matrix brought widened visible-light absorbance, narrowed bandgap, and improved charge separation and transfer. During photocatalytic degradation of tetracycline (TC) under visible LED light, the nanocomposites showed significant enhancement of degradation efficiency, compared to ZnO/ZnFe-LDH or BC alone, indicating a strong synergy between ZnO/ZnFe-LDH and BC. The nanocomposite containing 23.0 wt% of BC (ZnO/ZnFe-LDH@BC0.2) showed optimal performance (achieving 87.7% of degradation within 4 h) in comparison to the reported LDHs@carbon photocatalysts. Alkaline condition and co-existing CO32- ions could enhance the stability and recyclability of the nanocomposites. Additionally, the possible degradation pathway of TC was analyzed via LC-MS and the reduction in toxicity resulting from photocatalytic degradation was confirmed by the culture of mung bean sprouts. This study provides a rational design strategy and performance assessment of LDH-based nanocomposites for the treatment of antibiotics-contaminated water.



中文翻译:

ZnO修饰的ZnFe层状双氢氧化物@生物炭纳米复合材料的简便制备用于可见光下四环素的协同光降解

为了探索使用可见光响应光催化剂对抗生素污染水的有效处理,通过以下方法获得了一系列 ZnO 修饰的 ZnFe 层状双氢氧化物@生物炭 (ZnO/ZnFe-LDH@BC) 纳米复合材料一种简便的水热法。制备的纳米复合材料在 BC 基质上表现出均匀分布的 ZnO/ZnFe-LDH,允许利用更多的 ZnO/ZnFe-LDH 活性位点。BC 矩阵带来了可见光吸收加宽、带隙变窄以及电荷分离和转移的改善。在可见光 LED 光下光催化降解四环素 (TC) 期间,与单独使用 ZnO/ZnFe-LDH 或 BC 相比,纳米复合材料的降解效率显着提高,表明 ZnO/ZnFe-LDH 和 BC 之间具有很强的协同作用。与报道的 LDHs@carbon 光催化剂相比,含有 23.0 wt% BC (ZnO/ZnFe-LDH@BC 0.2 ) 的纳米复合材料表现出最佳性能(在 4 小时内实现 87.7% 的降解)。碱性条件和共存 CO 3 2-离子可以提高纳米复合材料的稳定性和可回收性。此外,通过LC-MS分析了TC可能的降解途径,并通过绿豆芽的培养证实了光催化降解导致的毒性降低。本研究为处理抗生素污染水的 LDH 基纳米复合材料提供了合理的设计策略和性能评估。

更新日期:2022-01-20
down
wechat
bug