当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface engineering of Co2N0.67/CoMoO4 heterostructure nanosheets as a highly active electrocatalyst for overall water splitting and Zn-H2O cell
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-01-20 , DOI: 10.1016/j.cej.2022.134795
Yan Hu 1 , Zuyang Luo 1 , Man Guo 1 , Jiaxin Dong 1 , Puxuan Yan 1 , Chuan Hu 1 , Tayirjan Taylor Isimjan 2 , Xiulin Yang 1
Affiliation  

The key in developing a low-cost, high-efficiency electrocatalyst for hydrogen generation is not only cutting the cost by avoiding noble metals but also utilizing the structure–function relationship to expose the maximum amounts of active sites on the surface by increasing the interface between the active components. Here, we demonstrated full-cycle synthesis, characterization, and optimization of Co2N0.67/CoMoO4 electrocatalyst on carbon-supported by density functional theory (DFT) calculations. The DFT calculation revealed a significant charge accumulation at the interface between Co2N0.67 and CoMoO4, suggesting the possibility of a strong synergy. As expected, electrochemical studies have shown a bifunctional Co2N0.67/CoMoO4 catalyst with low overpotential and durability towards hydrogen/oxygen evolution reactions (HER/OER) in alkaline electrolytes and robust overall water splitting performance at high current densities. In addition, the optimized Co2N0.67/CoMoO4 catalyst is also used in a Zn-H2O cell and displayed a power density exceeding Pt/C with the long-term stability of up to 170 h. The excellent electrochemical performance is the outcome of the better charge mobility at the interface resulted in the unique synergy between the active components.



中文翻译:

Co2N0.67/CoMoO4 异质结构纳米片的界面工程作为全水分解和 Zn-H2O 电池的高活性电催化剂

开发低成本、高效的制氢电催化剂的关键不仅是通过避免使用贵金属来降低成本,而且还利用结构-功能关系通过增加界面之间的界面来最大限度地暴露表面活性位点。有源组件。在这里,我们通过密度泛函理论 (DFT) 计算展示了碳负载Co 2 N 0.67 /CoMoO 4电催化剂的全循环合成、表征和优化。DFT 计算显示在 Co 2 N 0.67和 CoMoO 4之间的界面处有显着的电荷积累,暗示了强大的协同作用的可能性。正如预期的那样,电化学研究表明双功能 Co 2 N 0.67 /CoMoO 4催化剂在碱性电解质中具有低过电势和对析氢/析氧反应 (HER/OER) 的耐久性,以及在高电流密度下具有稳健的整体水分解性能。此外,优化后的 Co 2 N 0.67 /CoMoO 4催化剂也用于 Zn-H 2O 电池显示出超过 Pt/C 的功率密度,长期稳定性可达 170 小时。优异的电化学性能是界面处更好的电荷迁移率导致活性成分之间独特的协同作用的结果。

更新日期:2022-01-24
down
wechat
bug