当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic Core–Shell Materials: Synthesis, Spectroscopic Characterization, and Photocatalytic Applications
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2022-01-20 , DOI: 10.1021/accountsmr.1c00217
Hong-Jia Wang 1 , Jia-Sheng Lin 1 , Hua Zhang 1 , Yue-Jiao Zhang 1 , Jian-Feng Li 1
Affiliation  

The ability to concentrate light at the nanoscale and produce extremely high local electromagnetic (EM) fields makes plasmonics a promising and rapidly developing research area. In the region with high EM field intensity (usually called the “hot spot”), various processes can be significantly enhanced, including spectroscopy, luminescence, catalysis, etc. However, only coinage metals (material limitation) with nanoscale roughness (morphological limitation) exhibit significant plasmonic effects under the visible light region, which greatly hinders wider and further applications of plasmonics. Constructing plasmonic core–shell materials by coating a second material onto the surface of a plasmonic metal core is a potential solution to these limitations. The plasmonic core can amplify the signals and/or accelerate the processes of the shell materials or other substrates of interest, making plasmonic research on nonplasmonic materials possible, thus expanding the applications of plasmonics. Besides, through controllable synthesis, the size and composition of both the core and the shell can be tuned simultaneously and precisely. This offers huge possibilities to study and tune plasmonic structure–performance effects at the (sub)nanometer level, which would otherwise not be feasible.

中文翻译:

等离子体核-壳材料:合成、光谱表征和光催化应用

将光集中在纳米级并产生极高的局部电磁 (EM) 场的能力使等离子体激元成为一个有前途且发展迅速的研究领域。在具有高 EM 场强的区域(通常称为“热点”),可以显着增强各种过程,包括光谱、发光、催化等。然而,只有具有纳米级粗糙度(形态限制)的造币金属(材料限制)在可见光区域下表现出显着的等离子体效应,这极大地阻碍了等离子体的更广泛和进一步的应用。通过在等离子金属核的表面上涂覆第二种材料来构建等离子核壳材料是解决这些限制的潜在解决方案。等离子体核心可以放大信号和/或加速壳材料或其他感兴趣的底物的过程,使对非等离子体材料的等离子体研究成为可能,从而扩大等离子体的应用。此外,通过可控合成,可以同时精确地调节核和壳的尺寸和组成。这为在(亚)纳米级研究和调整等离子体结构性能效应提供了巨大的可能性,否则这是不可行的。
更新日期:2022-01-20
down
wechat
bug