当前位置: X-MOL 学术bioRxiv. Bioeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topological supramolecular network enabled highly conductive and stretchable organic bioelectronics
bioRxiv - Bioengineering Pub Date : 2022-01-18 , DOI: 10.1101/2022.01.16.476423
Yuanwen Jiang , Zhitao Zhang , Yi-Xuan Wang , Deling Li , Charles-Theophile Coen , Ernie Hwaun , Gan Chen , Hung-Chin Wu , Donglai Zhong , Simiao Niu , Weichen Wang , Aref Saberi , Jian-Cheng Lai , Yang Wang , Artem Trotsyuk , Kang Yong Loh , Chien-Chung Shih , Wenhui Xu , Kui Liang , Kailiang Zhang , Wenping Hu , Wang Jia , Zhen Cheng , Reinhold Dauskardt , Geoffrey Gurtner , Jeffrey Tok , Karl Deisseroth , Ivan Soltesz , Zhenan Bao

Intrinsically stretchable bioelectronic devices based on soft and conducting organic materials have been regarded as the ideal interface for seamless and biocompatible integration with the human body. However, the grand challenge remains for the conducting polymer to possess both high mechanical ductility and good electrical conduction at cellular level feature sizes. This longstanding material limitation in organic bioelectronics has impeded the full exploitation of its unique benefits. Here, we introduce a new molecular engineering strategy based on rationally designed topological supramolecular networks, which allows effective decoupling of competing effects from multiple molecular building blocks to meet complex requirements. We achieve two orders of magnitude improvement in the conductivity under 100% strain in physiological environment, along with the capability for direct photopatterning down to 2 μm. These unprecedented capabilities allow us to realize previously inaccessible bioelectronic applications including high-resolution monitoring of ‘soft and malleable’ creatures, e.g., octopus, and localized neuromodulation down to single nucleus precision for controlling organ-specific activities through delicate tissues, e.g., brainstem.

中文翻译:

拓扑超分子网络实现了高导电和可拉伸的有机生物电子学

基于柔软和导电有机材料的本征可拉伸生物电子器件被认为是与人体无缝和生物相容性集成的理想界面。然而,对于导电聚合物来说,在细胞水平特征尺寸上同时具有高机械延展性和良好导电性的巨大挑战仍然存在。有机生物电子学中这种长期存在的材料限制阻碍了其独特优势的充分利用。在这里,我们介绍了一种基于合理设计的拓扑超分子网络的新分子工程策略,该策略允许有效地将多个分子构建块的竞争效应解耦,以满足复杂的需求。我们在生理环境中的 100% 应变下实现了两个数量级的电导率提高,以及直接光刻低至 2 μm 的能力。这些前所未有的能力使我们能够实现以前无法实现的生物电子应用,包括对“柔软和可塑”生物(例如章鱼)的高分辨率监测,以及低至单核精度的局部神经调节,以通过精细组织(例如脑干)控制器官特异性活动。
更新日期:2022-01-20
down
wechat
bug