当前位置: X-MOL 学术Biomass Convers. Biorefin. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anaerobic digestion of slaughterhouse waste in batch and anaerobic sequential batch reactors
Biomass Conversion and Biorefinery ( IF 3.5 ) Pub Date : 2022-01-18 , DOI: 10.1007/s13399-021-02179-1
Vanessa Ripoll 1, 2 , Cristina Agabo-García 1 , Rosario Solera 1 , Montserrat Perez 1
Affiliation  

This work focuses on the design of an effective treatment process for slaughterhouse waste management. Four different treatment sequences were proposed, based on aerobic and anaerobic technologies, as well as thermal and centrifugation pre-treatments. Biochemical methane potential tests were carried out to assess the viability in terms of biodegradability and biogas production of the anaerobic digestion units, which involved different substrates for each proposed process (raw slaughterhouse wastewater, thermal pre-treated slaughterhouse activated sludge, supernatant of thermal pre-treated slaughterhouse sludge, and co-digestion mixture of slaughterhouse wastewater and supernatant of thermal pre-treated slaughterhouse sludge). The obtained results showed that thermal pre-treatment is not effective by itself. However, if it is followed by centrifugation, organic matter removal is importantly improved. In addition, removal efficiency reached 76.0% when employing a co-digestion mixture. Kinetic analyses showed that the specific constant rate of the mixture was 1.5 times higher than with the sole supernatant. Afterwards, the co-digestion mixture was employed as a substrate for an anaerobic sequencing batch reactor working under a semi-continuous operational mode. The influence of organic load rate (OLR) on organic matter removal and biogas production was studied. The best operational OLR range was 1.16–2.16 kg/m3•d, achieving 87.8% of chemical oxygen demand removal and 0.23 LCH4/Ldigester·d of methane production rate. A faster organic load rate than 2.88 kg/m3•d led to bioreactor destabilisation. The obtained results were competitive against published studies that employed different anaerobic technologies and made progress towards the industrial implementation of effective technology in slaughterhouse facilities.

Graphical abstract



中文翻译:

在间歇式和厌氧连续间歇式反应器中对屠宰场废物进行厌氧消化

这项工作的重点是设计屠宰场废物管理的有效处理工艺。基于好氧和厌氧技术以及热和离心预处理,提出了四种不同的处理顺序。进行了生化甲烷潜力测试,以评估厌氧消化装置在生物降解性和沼气产量方面的可行性,其中涉及每个拟议工艺的不同底物(生屠宰场废水、热预处理屠宰场活性污泥、热预处理的上清液)。处理过的屠宰场污泥,以及屠宰场废水和热预处理屠宰场污泥上清液的共消化混合物)。得到的结果表明,热预处理本身是无效的。然而,如果随后进行离心分离,则有机物去除率将得到显着提高。此外,当采用共消化混合物时,去除效率达到 76.0%。动力学分析表明,混合物的比恒定速率是单一上清液的 1.5 倍。之后,将共消化混合物用作在半连续操作模式下工作的厌氧序批反应器的底物。研究了有机负荷率(OLR)对有机物去除和沼气产量的影响。最佳操作 OLR 范围为 1.16–2.16 kg/m3•d,实现 87.8% 的化学需氧量去除和 0.23 L 动力学分析表明,混合物的比恒定速率是单一上清液的 1.5 倍。之后,将共消化混合物用作在半连续操作模式下工作的厌氧序批反应器的底物。研究了有机负荷率(OLR)对有机物去除和沼气产量的影响。最佳操作 OLR 范围为 1.16–2.16 kg/m3•d,实现 87.8% 的化学需氧量去除和 0.23 L 动力学分析表明,混合物的比恒定速率是单一上清液的 1.5 倍。之后,将共消化混合物用作在半连续操作模式下工作的厌氧序批反应器的底物。研究了有机负荷率(OLR)对有机物去除和沼气产量的影响。最佳操作 OLR 范围为 1.16–2.16 kg/m3•d,实现 87.8% 的化学需氧量去除和 0.23 LCH4 /L沼气池·d 的甲烷产率。比 2.88 kg/m3•d 更快的有机负荷率会导致生物反应器不稳定。所获得的结果与采用不同厌氧技术的已发表研究具有竞争力,并在屠宰场设施中有效技术的工业实施方面取得了进展。

图形概要

更新日期:2022-01-18
down
wechat
bug