当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid enzymatic CO2 capture process in intensified flat sheet membrane contactors with immobilized carbonic anhydrase
Separation and Purification Technology ( IF 8.6 ) Pub Date : 2022-01-14 , DOI: 10.1016/j.seppur.2022.120505
Hannaneh RASOULI 1 , Ion ILIUTA 1 , Francis BOUGIE 1 , Alain GARNIER 1 , Maria C. ILIUTA 1
Affiliation  

A hybrid enzymatic CO2 absorption process in an intensified flat sheet membrane contactor with immobilized human carbonic anhydrase II (hCA II) enzyme was proposed. In addition to be immobilized on the membrane surface, extra carbonic anhydrase enzyme was immobilized on the surface of magnetic nanoparticles (MNPs) dispersed in the liquid phase to reduce the mass transfer limitations and enhance the absorption process. This hybrid enzymatic process is beneficial to attain high CO2 absorption rates, even if a component of the enzymatic system, either the biocatalytic membrane or biocatalytic MNPs, does not operate appropriately. The improvement CO2 hydration in the presence of biocatalytic MNPs was more significant at lower CA loadings on membrane surface. Reusability of the biocatalytic membranes and biocatalytic MNPs was demonstrated by 10 absorption cycles and the intensified membrane contactor displayed stable operation for several hours. A multiscale mathematical model (under gas-filled or partially liquid-filled membrane pores conditions) was proposed to explore the behaviour of the intensified membrane contactor. Model simulations showed that the resistance to mass transfer in membrane wetted zones is overcame by the CO2 enzymatic absorption in these zones (catalyzed by enzyme immobilized in membrane pores) and possible by the absorption of CO2 in the presence of biocatalytic MNPs.



中文翻译:

具有固定化碳酸酐酶的强化平板膜接触器中的混合酶促 CO2 捕获过程

提出了一种在强化平板膜接触器中使用固定化人碳酸酐酶 II (hCA II) 酶的混合酶促 CO 2吸收过程。除了固定在膜表面外,额外的碳酸酐酶还固定在分散在液相中的磁性纳米粒子(MNPs)的表面,以减少传质限制并增强吸收过程。这种混合酶促过程有利于获得高 CO 2吸收率,即使酶促系统的一个组成部分(生物催化膜或生物催化 MNPs)不能正常运行。改善CO 2在生物催化 MNPs 存在下的水合在膜表面较低的 CA 负载下更为显着。10 个吸收循环证明了生物催化膜和生物催化 MNP 的可重复使用性,强化膜接触器显示稳定运行数小时。提出了一个多尺度数学模型(在充气或部分充满液体的膜孔条件下)来探索强化膜接触器的行为。模型模拟表明,膜润湿区的传质阻力可通过这些区域中的 CO 2酶促吸收(由固定在膜孔中的酶催化)克服,并且可能通过在生物催化 MNP 存在下吸收 CO 2来克服。

更新日期:2022-02-01
down
wechat
bug