当前位置: X-MOL 学术Chem. Biol. Technol. Agric. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Removal of iron and manganese from groundwater sources using nano-biosorbents
Chemical and Biological Technologies in Agriculture ( IF 5.2 ) Pub Date : 2022-01-13 , DOI: 10.1186/s40538-021-00268-x
Mohammad Akbari Zadeh 1 , Allahyar Daghbandan 1 , Behrouz Abbasi Souraki 1
Affiliation  

The presence of iron (Fe) and manganese (Mn) ions in rocky beds leads to groundwater pollution. Moreover, their excessive concentration causes bad taste and color stains of water. Tea leaves-derived char (TLC), rice straw-derived char (RSC), and nanosilica (NS) were used to adsorb Fe and Mn ions from water sources. The effects of parameters such as contact time, composition percentage, and particle size of biosorbents in a fixed-bed adsorption column were investigated. The study on the adsorption of Fe and Mn ions showed that the amount of adsorption increased significantly by decreasing the particle size. Furthermore, the combination of nano-biosorbents with nanosilica improved the adsorption. The Thomas and Adams–Bohart models adequately indicated the adsorption of Fe and Mn ions onto nano-biosorbents in the column mode. The TLC and RSC with NS are applicable for the removal of Fe and Mn ions from groundwater. According to the BET analysis results, with more crushing of biosorbents by ball mill and placing them in the furnace, specific surface area of tea leaves and rice straw increased from 0.29 to 3.45 and from 3.70 to 10.99 m2/g, respectively. The absorption of iron and manganese from the aqueous solution increased with the percentage of nano-silica. According to breakthrough curves, under best conditions (the seventh mode), nano-biosorbents could remove 98.05% and 97.92% of iron and manganese ions, respectively. The maximum equilibrium capacity of the adsorption column (mg/g) was 256.56 for iron and 244.79 for manganese.

中文翻译:

使用纳米生物吸附剂去除地下水源中的铁和锰

岩石床中铁 (Fe) 和锰 (Mn) 离子的存在会导致地下水污染。此外,它们的浓度过高会导致水的味道和颜色变差。茶叶炭 (TLC)、稻草炭 (RSC) 和纳米二氧化硅 (NS) 用于吸附水源中的 Fe 和 Mn 离子。研究了固定床吸附柱中生物吸附剂的接触时间、组成百分比和粒径等参数的影响。对 Fe 和 Mn 离子吸附的研究表明,随着粒径的减小,吸附量显着增加。此外,纳米生物吸附剂与纳米二氧化硅的组合改善了吸附。Thomas 和 Adams-Bohart 模型充分表明了 Fe 和 Mn 离子在柱模式下吸附到纳米生物吸附剂上。TLC 和带有 NS 的 RSC 适用于去除地下水中的 Fe 和 Mn 离子。根据 BET 分析结果,随着球磨机对生物吸附剂的更多粉碎并放入炉中,茶叶和稻草的比表面积分别从 0.29 增加到 3.45 和从 3.70 增加到 10.99 m2/g。水溶液中铁和锰的吸收随纳米二氧化硅的百分比增加而增加。根据突破曲线,在最佳条件(第七模式)下,纳米生物吸附剂可分别去除98.05%和97.92%的铁离子和锰离子。吸附柱的最大平衡容量 (mg/g) 为铁为 256.56,锰为 244.79。随着球磨机更多地粉碎生物吸附剂并将它们放入炉中,茶叶和稻草的比表面积分别从0.29增加到3.45和从3.70增加到10.99 m2/g。水溶液中铁和锰的吸收随纳米二氧化硅的百分比增加而增加。根据突破曲线,在最佳条件(第七模式)下,纳米生物吸附剂可分别去除98.05%和97.92%的铁离子和锰离子。吸附柱的最大平衡容量 (mg/g) 为铁为 256.56,锰为 244.79。随着球磨机更多地粉碎生物吸附剂并将它们放入炉中,茶叶和稻草的比表面积分别从0.29增加到3.45和从3.70增加到10.99 m2/g。水溶液中铁和锰的吸收随纳米二氧化硅的百分比增加而增加。根据突破曲线,在最佳条件(第七模式)下,纳米生物吸附剂可分别去除98.05%和97.92%的铁离子和锰离子。吸附柱的最大平衡容量 (mg/g) 为铁为 256.56,锰为 244.79。水溶液中铁和锰的吸收随纳米二氧化硅的百分比增加而增加。根据突破曲线,在最佳条件(第七模式)下,纳米生物吸附剂可分别去除98.05%和97.92%的铁离子和锰离子。吸附柱的最大平衡容量 (mg/g) 为铁为 256.56,锰为 244.79。水溶液中铁和锰的吸收随纳米二氧化硅的百分比增加而增加。根据突破曲线,在最佳条件(第七模式)下,纳米生物吸附剂可分别去除98.05%和97.92%的铁离子和锰离子。吸附柱的最大平衡容量 (mg/g) 为铁为 256.56,锰为 244.79。
更新日期:2022-01-13
down
wechat
bug