当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design methodology and multi-objective optimization of small-scale power-water production based on integration of Stirling engine and multi-effect evaporation desalination system
Desalination ( IF 8.3 ) Pub Date : 2022-01-11 , DOI: 10.1016/j.desal.2021.115542
Bahram Mahjoob Karambasti 1 , Maryam Ghodrat 2 , Ghadir Ghorbani 3 , Ali Lalbakhsh 4 , Masud Behnia 5
Affiliation  

To meet the raising demands for energy and potable water, integration of power plants and desalination systems for large-scale coproduction have been widely used in the world. However, in remote and rural locations with no infrastructures such as power grids, integration of large-scale systems is not financially viable. This paper presents a conceptual design and a methodology based on the GPU-3 Stirling engine in upstream as prime mover, coupled with three configurations of multi-effect evaporation desalination (MED) unit in downstream to address the power-water demands for areas with lower population. A multi-objective optimization technique is employed to find the optimal design parameters of the proposed hybrid system. Three objective functions namely maximizing power and water production and minimizing the cost of products are considered. Decision-making tools are implemented on the optimal points of each configuration to select the optimized configurations for each cogeneration system. The most effective system is then introduced by implementing Analytical Hierarchy Process (AHP) technique. It is found that the final selected system is capable of delivering 2.58 kW of electricity and 19.92 m3 fresh water per day with 2.07 $ ∙ hr−1 cost of products which can be divided into 0.29 $ ∙ kWhr−1 and 1.6 $ ∙ m3 for power and water, respectively.



中文翻译:

基于斯特林发动机与多效蒸发淡化系统集成的小规模动力水生产设计方法与多目标优化

为了满足对能源和饮用水日益增长的需求,大规模联产的发电厂和海水淡化系统的集成已在世界范围内得到广泛应用。然而,在没有电网等基础设施的偏远和农村地区,大规模系统的集成在财务上是不可行的。本文提出了基于上游 GPU-3 斯特林发动机作为原动机,结合下游多效蒸发淡化 (MED) 装置的三种配置的概念设计和方法,以解决低能耗地区的电力用水需求。人口。采用多目标优化技术来找到所提出的混合系统的最佳设计参数。考虑了三个目标函数,即最大化电力和水的产量以及最小化产品成本。在每个配置的最佳点上实施决策工具,以选择每个热电联产系统的优化配置。然后通过实施层次分析法 (AHP) 技术引入最有效的系统。发现最终选择的系统能够提供 2.58 kW 的电力和 19.92 m每天3淡水,产品成本为2.07 $ ∙ hr -1,可分为 0.29 $ ∙ kWhr -1和 1.6 $  ∙  m 3分别用于电力和水。

更新日期:2022-01-11
down
wechat
bug