当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new analytical model to predict the profile and stress distribution of tube in three-roll continuous retained mandrel rolling
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2022-01-05 , DOI: 10.1016/j.jmatprotec.2022.117491
Zhaohui Wei 1 , Chunjing Wu 1
Affiliation  

To minimize the adjustments to the initial roll speed setting in tube manufacturing, both the tube profile and the tube stress distribution during the rolling are needed to be predicted before the actual rolling. While predicting the tube profile is to make the rolling reach to the metal flow balance state efficiently, predicting the tube stress distribution is to decrease the potential formation of the rolled defects caused by the non-ideal stress distribution in tube at each pass. This requires the rolling model to combine the prediction of tube profile with the prediction of stress distribution of tube in its formulation. A new analytical model which can meet the above requirements is presented in this paper. The mechanics of rolling tube in three-roll continuous retained mandrel rolling has been analyzed in the model. Validity of the model has been examined by hot rolling experiments at the plant. According to the experimental results, the predicted tube profiles are in good agreement with the measured, with the prediction errors of cross-sectional areas being in the range of 0.8∼2.5 %. The theoretical initial roll speed setting calculated based on the proposed model can be applied directly to tube manufacturing, with further adjustments at the mill being less than 4 %. The predicted roll forces calculated based on the proposed model have a maximum deviation from the measured less than 15 %. In general, the hot rolling experimental results at the plant have proved the validity of the proposed model.



中文翻译:

三辊连续保留芯棒轧制管材轮廓和应力分布预测的新分析模型

为了最大限度地减少对管材制造中初始轧制速度设置的调整,在实际轧制之前需要预测轧制过程中的管材轮廓和管材应力分布。管材轮廓预测是为了使轧制有效地达到金属流动平衡状态,而管材应力分布预测是为了减少由于管材每道次应力分布不理想而导致轧制缺陷的潜在形成。这就要求轧制模型在其公式中将管材轮廓的预测与管材应力分布的预测结合起来。本文提出了一种能够满足上述要求的新分析模型。在模型中分析了三辊连续保持芯棒轧制过程中的轧管力学。该模型的有效性已通过工厂的热轧实验进行了检验。根据实验结果,预测的管型材与实测值吻合良好,截面积预测误差在0.8~2.5%之间。根据所提出的模型计算的理论初始轧辊速度设置可以直接应用于管材制造,在轧机处的进一步调整小于 4%。基于建议模型计算的预测侧倾力与测量值的最大偏差小于 15%。总的来说,该厂的热轧试验结果证明了所提模型的有效性。截面积预测误差在0.8~2.5%范围内。根据所提出的模型计算的理论初始轧辊速度设置可以直接应用于管材制造,在轧机处的进一步调整小于 4%。基于建议模型计算的预测侧倾力与测量值的最大偏差小于 15%。总的来说,该厂的热轧试验结果证明了所提模型的有效性。截面积预测误差在0.8~2.5%范围内。根据所提出的模型计算的理论初始轧辊速度设置可以直接应用于管材制造,在轧机处的进一步调整小于 4%。基于建议模型计算的预测侧倾力与测量值的最大偏差小于 15%。总的来说,该厂的热轧试验结果证明了所提模型的有效性。基于建议模型计算的预测侧倾力与测量值的最大偏差小于 15%。总的来说,该厂的热轧试验结果证明了所提模型的有效性。基于建议模型计算的预测侧倾力与测量值的最大偏差小于 15%。总的来说,该厂的热轧试验结果证明了所提模型的有效性。

更新日期:2022-01-08
down
wechat
bug