当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of evapotranspiration estimation under cloud impacts over China using ground observations and multiple satellite optical and microwave measurements
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2022-01-05 , DOI: 10.1016/j.agrformet.2021.108806
Yipu Wang 1 , Rui Li 1, 2, 3 , Jiheng Hu 1 , Yuyun Fu 1, 3 , Jiawei Duan 1 , Yuanxi Cheng 1 , Binbin Song 1
Affiliation  

Evapotranspiration (ET) is an important component of the hydrological cycle and energy balance in a land-atmosphere system. Satellite remote sensing has been widely used to estimate regional and global ET, but most previous methods depend on optical measurements that are limited to cloud-free conditions. This makes ET estimation challenging under cloudy sky. Currently, evaluations of satellite ET estimation under various cloud conditions remain lacking at the regional scale. Owing to the ability to penetrate clouds, satellite passive microwave measurements are powerful tools for retrieving ET under clouds. This study evaluated a satellite microwave-based daily ET method under all sky conditions over the part of China between 18°N and 50°N from 2003 to 2010, using microwave emissivity difference vegetation index (EDVI) as the proxy of vegetation water content (VWC). Validations using the surface water balance method found that the estimated ET (EDVI-ET) had an overall small bias (6.18%) in eight river basins. EDVI-ET displayed consistent spatiotemporal patterns with global MOD16 ET, with high spatial correlation (R>0.71) and monthly temporal correlation (R>0.82) throughout four seasons. Their differences were also small (<0.56mmday−1) in forests, savannas, grass/shrubs, and croplands. Furthermore, cloud impacts on the regional ET were found to be significant and spatiotemporally heterogeneous. Both EDVI-ET and in-situ observations at seven flux towers indicated that cloud-induced reduction in daily ET could exceed 30% when the cloud cover increased by 60% (R2 of 0.42, fitting line slope of 0.80, p<0.001). Under increased cloud conditions in summer, the changes in net radiation dominated the ET over dense vegetation in southern China, while the roles of air temperature and humidity increased over water-stressed barrens and short vegetation in northwest China. VWC affected EDVI-ET under clouds in temperate transitional zones from flatlands to highlands. This study highlighted the importance of cloud impacts in satellite ET estimation.

更新日期:2022-01-06
down
wechat
bug