当前位置: X-MOL 学术Energy Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficiency improvement of half-tandem CIGS/perovskite solar cell by designing nano-prism nanostructure as the controllable light trapping
Energy Reports ( IF 4.7 ) Pub Date : 2021-12-30 , DOI: 10.1016/j.egyr.2021.12.038
Nasrin Solhtalab 1 , Mohammad Hosein Mohammadi 2 , Mehdi Eskandari 3 , Davood Fathi 2
Affiliation  

Utilizing photonic nanostructures is a very efficient technique to capture light in broadband as well as a cheap and flexible method in photovoltaic devices. In this article, the finite element method (FEM) is applied to investigate the novel structures for perovskite solar cells (PSCs) aiming to find methods to enhance light absorption in the active layer. Initially, in order to boost energy harvesting, we propose a bilayer heterojunction such a way that the CIGS layer is incorporated underneath the perovskite (CHNHPbI) layer in the PSC to absorb a wider spectral region of solar power. The optimized thickness for the CIGS layer is determined at 500 nm where the power conversion efficiency (PCE) is increased from 14.37% to 17.62%. Then, in an effort to further increase the light absorption, nano-prism light-trapping configuration is used at the perovskite-CIGS interface, and the performance of cells is investigated at different heights of these nanostructures. Eventually, the height of 60 nm is where the highest performance with the short-circuit current density () of 27.2 mA/cm, the open-circuit voltage () of 0.84 V, and the PCE of 19.29%, are obtained, showing almost 35% improvement in comparison with the reference sample. The proposed structure enables high-performance and more applicable PSCs in the future.

中文翻译:

通过设计纳米棱柱纳米结构作为可控光捕获提高半串联CIGS/钙钛矿太阳能电池的效率

利用光子纳米结构是一种非常有效的宽带捕获光技术,也是光伏器件中一种廉价且灵活的方法。在本文中,应用有限元方法(FEM)研究钙钛矿太阳能电池(PSC)的新型结构,旨在寻找增强有源层光吸收的方法。最初,为了促进能量收集,我们提出了一种双层异质结,将 CIGS 层合并到 PSC 中的钙钛矿 (CHNHPbI) 层下方,以吸收更宽光谱范围的太阳能。 CIGS 层的优化厚度确定为 500 nm,其中功率转换效率 (PCE) 从 14.37% 增加到 17.62%。然后,为了进一步增加光吸收,在钙钛矿-CIGS界面处使用纳米棱镜光捕获结构,并在这些纳米结构的不同高度下研究电池的性能。最终,在 60 nm 的高度处获得了最高性能,短路电流密度 () 为 27.2 mA/cm,开路电压 () 为 0.84 V,PCE 为 19.29%,几乎显示出与参考样品相比提高了 35%。所提出的结构能够在未来实现高性能和更适用的PSC。
更新日期:2021-12-30
down
wechat
bug