当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental analysis of subsurface integrity during fine turning of OFE copper for radiofrequency cavity manufacturing
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2021-12-28 , DOI: 10.1016/j.jmatprotec.2021.117483
A. Camelin 1, 2, 3 , P. Naisson 1 , G. Poulachon 2 , A. D’Acunto 3 , S. Atieh 1
Affiliation  

Machining oxygen-free electronic (OFE) copper could be challenging but is not widely studied because few industrial or critical components requires to master the machined sub-surface characteristics. CERN radio frequency cavities are one of the applications, especially because the turned surface is not the functional one of the final products. The niobium coating post process, which gives superconductive properties to the cavity, largely depends on the machined surface characteristics. The present study relies on an experimental approach of the cutting process, through thermal and mechanical probing of high precision, pollution free, turning. Cutting forces and thermal load on the tool are detailed for finish turning. The critical uncut chip thickness, defined at macroscale as the limit between cutting and ploughing behavior, is also a frontier at microscale. Consequently, surface integrity is evaluated by advance microstructural analysis (EBSD and FIB), imposed by the thinness of the affected layer. Grain recrystallization appears in the first 0.6 micrometers below the surface and deformed grains are observed up to 4 micrometers for cutting regime, while the thickness of the layers is three time larger in case of ploughing regime. Hence surface integrity of OFE copper finish turning is characterized and optimal cutting conditions are defined. The research shows that simple cutting tests can quickly narrow down to optimal cutting condition, which are then confirmed through metallurgical analysis, even in the edge case of pure OFE copper, hence relevant to other material.



中文翻译:

射频腔制造用OFE铜精车削过程中亚表面完整性的实验分析

加工无氧电子 (OFE) 铜可能具有挑战性,但并未得到广泛研究,因为很少有工业或关键部件需要掌握加工的亚表面特性。CERN 射频腔是应用之一,特别是因为车削表面不是最终产品的功能之一。铌涂层后处理赋予腔体超导特性,很大程度上取决于加工表面特性。本研究依赖于切削过程的实验方法,通过高精度、无污染、车削的热和机械探测。刀具上的切削力和热负荷详细说明了精车。临界未切削切屑厚度,在宏观尺度上定义为切削和刨削行为之间的界限,也是微尺度的前沿。因此,表面完整性是通过先进的显微结构分析(EBSD 和 FIB)来评估的,由受影响层的厚度决定。晶粒再结晶出现在表面以下的前 0.6 微米处,在切削状态下观察到变形晶粒达 4 微米,而在犁削状态下,层的厚度增加了三倍。因此,OFE 铜精车削的表面完整性被表征并定义了最佳切削条件。研究表明,简单的切割测试可以快速缩小到最佳切割条件,然后通过金相分析确认,即使在纯 OFE 铜的边缘情况下,因此与其他材料相关。表面完整性通过先进的微观结构分析(EBSD 和 FIB)进行评估,由受影响层的薄度施加。晶粒再结晶出现在表面以下的前 0.6 微米处,在切削状态下观察到变形晶粒达 4 微米,而在犁削状态下,层的厚度增加了三倍。因此,OFE 铜精车削的表面完整性被表征并定义了最佳切削条件。研究表明,简单的切割测试可以快速缩小到最佳切割条件,然后通过金相分析确认,即使在纯 OFE 铜的边缘情况下,因此与其他材料相关。表面完整性通过先进的微观结构分析(EBSD 和 FIB)进行评估,由受影响层的薄度施加。晶粒再结晶出现在表面以下的前 0.6 微米处,在切削状态下观察到变形晶粒达 4 微米,而在犁削状态下,层的厚度增加了三倍。因此,OFE 铜精车削的表面完整性被表征并定义了最佳切削条件。研究表明,简单的切割测试可以快速缩小到最佳切割条件,然后通过金相分析确认,即使在纯 OFE 铜的边缘情况下,因此与其他材料相关。在切割方式下,在表面以下 6 微米处观察到变形颗粒,最大可达 4 微米,而在犁耕方式下,层的厚度要大三倍。因此,OFE 铜精车削的表面完整性被表征并定义了最佳切削条件。研究表明,简单的切割测试可以快速缩小到最佳切割条件,然后通过金相分析确认,即使在纯 OFE 铜的边缘情况下,因此与其他材料相关。在切割方式下,在表面以下 6 微米处观察到变形颗粒,最大可达 4 微米,而在犁耕方式下,层的厚度要大三倍。因此,OFE 铜精车削的表面完整性被表征并定义了最佳切削条件。研究表明,简单的切割测试可以快速缩小到最佳切割条件,然后通过金相分析确认,即使在纯 OFE 铜的边缘情况下,因此与其他材料相关。

更新日期:2022-01-06
down
wechat
bug