当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synchronous Manipulation of Ion and Electron Transfer in Wadsley–Roth Phase Ti-Nb Oxides for Fast-Charging Lithium-Ion Batteries
Advanced Science ( IF 14.3 ) Pub Date : 2021-12-28 , DOI: 10.1002/advs.202104530
Yang Yang 1 , Jingxin Huang 1 , Zhenming Cao 1 , Zeheng Lv 2 , Dongzhen Wu 1 , Zhipeng Wen 1 , Weiwei Meng 3 , Jing Zeng 1 , Cheng Chao Li 2 , Jinbao Zhao 1
Affiliation  

Implementing fast-charging lithium-ion batteries (LIBs) is severely hindered by the issues of Li plating and poor rate capability for conventional graphite anode. Wadsley–Roth phase TiNb2O7 is regarded as a promising anode candidate to satisfy the requirements of fast-charging LIBs. However, the unsatisfactory electrochemical kinetics resulting from sluggish ion and electron transfer still limit its wide applications. Herein, an effective strategy is proposed to synchronously improve the ion and electron transfer of TiNb2O7 by incorporation of oxygen vacancy and N-doped graphene matrix (TNOx@N-G), which is designed by combination of solution-combustion and electrostatic self-assembly approach. Theoretical calculations demonstrate that Li+ intercalation gives rise to the semi-metallic characteristics of lithiated phases (LiyTNOx), leading to the self-accelerated electron transport. Moreover, in situ X-ray diffraction and Raman measurements reveal the highly reversible structural evolution of the TNOx@N-G during cycling. Consequently, the TNOx@N-G delivers a higher reversible capacity of 199.0 mAh g−1 and a higher capacity retention of 86.5% than those of pristine TNO (155.8 mAh g−1, 59.4%) at 10 C after 2000 cycles. Importantly, various electrochemical devices including lithium-ion full battery and hybrid lithium-ion capacitor by using the TNOx@N-G anode exhibit excellent rate capability and cycling stability, verifying its potential in practical applications.

中文翻译:


用于快速充电锂离子电池的 Wadsley-Roth 相 Ti-Nb 氧化物中离子和电子转移的同步操纵



由于传统石墨阳极的镀锂问题和倍率性能差,快速充电锂离子电池(LIB)的实现受到严重阻碍。 Wadsley-Roth相TiNb 2 O 7被认为是满足快速充电LIB要求的有前途的阳极候选者。然而,离子和电子转移缓慢导致的电化学动力学不令人满意仍然限制了其广泛应用。在此,提出了一种有效的策略,通过结合氧空位和氮掺杂石墨烯基体(TNO x @NG)来同步提高TiNb 2 O 7的离子和电子转移,该策略是通过溶液燃烧和静电相结合设计的自组装方法。理论计算表明,Li +嵌入产生了锂化相 (Li y TNO x ) 的半金属特性,从而导致自加速电子传输。此外,原位 X 射线衍射和拉曼测量揭示了 TNO x @NG 在循环过程中高度可逆的结构演化。因此,与原始TNO(155.8 mAh g -1 ,59.4%)相比,TNO x @NG在2000次循环后在10 C下具有更高的可逆容量(199.0 mAh g −1 )和更高的容量保持率(86.5%)。 重要的是,使用TNO x @NG负极的各种电化学装置,包括锂离子全电池和混合锂离子电容器,表现出优异的倍率性能和循环稳定性,验证了其在实际应用中的潜力。
更新日期:2021-12-28
down
wechat
bug