当前位置: X-MOL 学术Chem. Eng. Res. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural investigation of phosphonium-based ionic liquid impregnated mesostructured silica nanoparticles and application towards the adsorption of Pb(II)
Chemical Engineering Research and Design ( IF 3.9 ) Pub Date : 2021-12-22 , DOI: 10.1016/j.cherd.2021.12.025
Mochamad L. Firmansyah 1 , Nurul S. Hassan 2 , Aishah A. Jalil 2, 3 , Rino R. Mukti 4, 5, 6 , Lee Peng Teh 7 , Herma D. Setiabudi 8, 9
Affiliation  

Adsorption has been widely used in waste water treatment due to its simplicity and cost-effective process. One of the popular adsorbent was silica due to their advantageous properties. Immobilizing additive onto particular adsorbent is one of the way to enhance adsorption capacity. Immobilizing ionic liquid (IL) onto silica-based support could alleviate the drawbacks of IL and enhance the adsorption capacity. Thus, silica-based materials, silica and mesostructured silica nanoparticle (MSN), were impregnated with a phosphonium-based ionic liquid (IL), trioctyldodecylphosphonium bromide (P8,8,8,12Br), which was designated as IL@SIL and IL@MSN. The structural variation of the support greatly impact the adsorbent performance. The results showed that IL@MSN with superior surface properties exhibit a faster reaction kinetic and lower thermodynamic barrier for the adsorption of Pb(II). Both adsorbents followed a pseudo second-order kinetic and chemically adsorbed Pb(II). IL@MSN showed a higher adsorption capacity in both batch and column adsorption than that of IL@SIL. The equilibrium data of both adsorbents fitted well with the Freundlich isotherm model with maximum adsorption capacity of 256.4 and 142.9 mg g−1 for IL@MSN and IL@SIL, respectively. In agreement with the batch experiment, IL@MSN showed a higher adsorption capacity in column adsorption than that of IL@SIL (325.6 and 242.2, respectively). Column adsorption with IL@MSN was able to achieve 94% removal of Pb(II) while IL@SIL achieved 70%. Superior surface properties of IL@MSN allowed a longer duration of column exhaustion than that of IL@SIL. The column experimental data showed a good fit with the Thomas model. Immobilized IL on silica based materials has potential as an adsorbent for heavy metals and structural variation over the support material played an important role.



中文翻译:

鏻基离子液体浸渍介孔结构二氧化硅纳米粒子的结构研究及其在 Pb(II) 吸附中的应用

吸附法由于其工艺简单、成本低,在废水处理中得到了广泛的应用。由于其优越的特性,一种流行的吸附剂是二氧化硅。将添加剂固定在特定的吸附剂上是提高吸附能力的方法之一。将离子液体(IL)固定在二氧化硅基载体上可以减轻离子液体的缺点并提高吸附能力。因此,二氧化硅基材料,二氧化硅和介孔结构二氧化硅纳米颗粒 (MSN),用基于鏻的离子液体 (IL)、三辛基十二烷基溴化鏻 (P 8,8,8,12Br),被指定为 IL@SIL 和 IL@MSN。载体的结构变化极大地影响了吸附剂的性能。结果表明,具有优异表面性能的 IL@MSN 对 Pb(II) 的吸附表现出更快的反应动力学和更低的热力学势垒。两种吸附剂都遵循伪二级动力学和化学吸附 Pb(II)。IL@MSN 在批量和柱吸附中都表现出比 IL@SIL 更高的吸附能力。两种吸附剂的平衡数据均符合 Freundlich 等温线模型,最大吸附容量分别为 256.4 和 142.9 mg g -1分别用于 IL@MSN 和 IL@SIL。与批量实验一致,IL@MSN 在柱吸附中显示出比 IL@SIL 更高的吸附容量(分别为 325.6 和 242.2)。使用 IL@MSN 的柱吸附能够实现 94% 的 Pb(II) 去除率,而 IL@SIL 实现 70%。IL@MSN 卓越的表面特性允许比 IL@SIL 更长的色谱柱耗尽持续时间。柱实验数据显示出与 Thomas 模型的良好拟合。二氧化硅基材料上的固定化离子液体具有作为重金属吸附剂的潜力,载体材料的结构变化发挥了重要作用。

更新日期:2022-01-03
down
wechat
bug