当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Revealing the Influence of Molecular Chirality on Tunnel-Ionization Dynamics
Physical Review X ( IF 11.6 ) Pub Date : 2021-12-21 , DOI: 10.1103/physrevx.11.041056
E. Bloch , S. Larroque , S. Rozen , S. Beaulieu , A. Comby , S. Beauvarlet , D. Descamps , B. Fabre , S. Petit , R. Taïeb , A. J. Uzan , V. Blanchet , N. Dudovich , B. Pons , Y. Mairesse

Light-matter interaction based on strong laser fields enables probing the structure and dynamics of atomic and molecular systems with unprecedented resolutions, through high-order harmonic spectroscopy, laser-induced electron diffraction, and holography. All strong-field processes rely on a primary ionization mechanism where electrons tunnel through the target potential barrier lowered by the laser field. Tunnel ionization is, thus, of paramount importance in strong-field physics and attoscience. However, the tunneling dynamics and properties of the outgoing electronic wave packets often remain hidden beneath the influence of the subsequent scattering of the released electron onto the ionic potential. Here, we present a joint experimental-theoretical endeavor to characterize the influence of sub-barrier dynamics on the amplitude and phase of the wave packets emerging from the tunnel. We use chiral molecules, whose photoionization by circularly polarized light produces forward-backward asymmetric electron distributions with respect to the light propagation direction. These asymmetric patterns provide a background-free signature of the chiral potential in the ionization process. We first implement the attoclock technique, using bicircular two-color fields. We find that, in the tunnel-ionization process, molecular chirality induces a strong forward-backward asymmetry in the electron yield, while the subsequent scattering of the freed electron onto the chiral potential leads to an asymmetric angular streaking of the electron momentum distribution. In order to access the phase of the tunneling wave packets, we introduce subcycle gated chiral interferometry. We employ an orthogonally polarized two-color laser field whose optical chirality is manipulated on a sub-laser-cycle timescale. Numerical simulations are used to interpret the electron interference patterns inherent to this interaction scheme. They show that the combined action of the chiral potential and rotating laser field not only imprints asymmetric ionization amplitudes during the tunneling process, but also induces a forward-backward asymmetric phase profile onto the outgoing electron wave packets. Chiral light-matter interaction thus induces subtle angular-dependent shaping of both the amplitude and the phase of tunneling wave packets.

中文翻译:

揭示分子手性对隧道电离动力学的影响

基于强激光场的光物质相互作用能够通过高次谐波光谱、激光诱导电子衍射和全息术,以前所未有的分辨率探测原子和分子系统的结构和动力学。所有强场过程都依赖于初级电离机制,其中电子穿过激光场降低的目标势垒。因此,隧道电离在强场物理学和原子科学中至关重要。然而,传出电子波包的隧道动力学和特性通常隐藏在释放电子随后散射到离子势上的影响之下。这里,我们提出了一项联合实验理论努力,以表征子屏障动力学对从隧道中出现的波包的幅度和相位的影响。我们使用手性分子,其通过圆偏振光的光电离产生关于光传播方向的前后不对称电子分布。这些不对称图案提供了电离过程中手性电位的无背景特征。我们首先使用双圆双色场实现 attoclock 技术。我们发现,在隧道电离过程中,分子手性在电子产率中引起强烈的前后不对称性,而随后释放的电子散射到手性势上会导致电子动量分布的不对称角条纹。为了获得隧道波包的相位,我们引入了亚周期门控手性干涉测量法。我们采用正交偏振的双色激光场,其光学手性在亚激光周期时间尺度上进行操纵。数值模拟用于解释这种相互作用方案固有的电子干涉图案。他们表明,手征势和旋转激光场的联合作用不仅在隧穿过程中产生了不对称的电离幅度,而且还在出射的电子波包上产生了前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。我们介绍了亚周期门控手性干涉测量法。我们采用正交偏振的双色激光场,其光学手性在亚激光周期时间尺度上进行操纵。数值模拟用于解释这种相互作用方案固有的电子干涉图案。他们表明,手征势和旋转激光场的联合作用不仅在隧穿过程中产生了不对称的电离幅度,而且还在出射的电子波包上产生了前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。我们介绍了亚周期门控手性干涉测量法。我们采用正交偏振的双色激光场,其光学手性在亚激光周期时间尺度上进行操纵。数值模拟用于解释这种相互作用方案固有的电子干涉图案。他们表明,手征势和旋转激光场的联合作用不仅在隧穿过程中产生了不对称的电离幅度,而且还在出射的电子波包上产生了前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。数值模拟用于解释这种相互作用方案固有的电子干涉图案。他们表明,手征势和旋转激光场的联合作用不仅在隧穿过程中产生了不对称的电离幅度,而且还在出射的电子波包上产生了前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。数值模拟用于解释这种相互作用方案固有的电子干涉图案。他们表明,手征势和旋转激光场的联合作用不仅在隧穿过程中产生了不对称的电离幅度,而且还在出射的电子波包上产生了前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。但也会在传出的电子波包上引起前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。但也会在传出的电子波包上引起前后不对称的相位分布。因此,手性光-物质相互作用会引起隧道波包的振幅和相位的微妙的角度相关整形。
更新日期:2021-12-21
down
wechat
bug