当前位置: X-MOL 学术Crit. Care › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of chest wall loading during supine and prone position in a critically ill covid-19 patient: a new strategy for ARDS?
Critical Care ( IF 8.8 ) Pub Date : 2021-12-20 , DOI: 10.1186/s13054-021-03865-2
Sergio Lassola 1 , Sara Miori 1 , Andrea Sanna 1 , Rocco Pace 1 , Sandra Magnoni 1 , Luigi Vetrugno 2, 3 , Michele Umbrello 4
Affiliation  

Dear Editor,

We read with great interest the review by Gattinoni and Marini [1]. In their paper, the authors postulate a positive effect on respiratory mechanics of local chest wall compression over the sternum or the abdomen of patients with severe ARDS, which is supposed to improve the tidal lung compliance and transpulmonary pressure.

The global pandemic of SARS-CoV-2 infection, and the consequent coronavirus disease 2019 (COVID-19), the most concerning complication, of which is acute hypoxemic respiratory failure, led to a surge in patients requiring mechanical ventilation and ICU admission [2]. In a small but significant part of such patients, conventional lung protective ventilation is not sufficient to relieve hypoxemia, and other strategies should be taken into account.

Prone positioning is an established strategy to improve oxygenation in severe ARDS, and its application was associated with a reduction in mortality rate [3]. Placing patients into prone position induces a more uniform distribution of tidal volume by reversing the vertical pleural pressure gradient. In addition, prone position decreases the superimposed pressure of both the heart and the abdomen on the dorso-caudal regions of the lungs [4]. On the contrary, pulmonary perfusion remains preferentially distributed to the dorsal lung regions, thus improving overall alveolar ventilation/perfusion matching. Moreover, the larger lung tissue mass suspended from a wider dorsal chest wall effects a more homogeneous distribution of pleural pressures throughout the lung, which in turn reduces abnormal strain and stress development. This is believed to avoid the development of ventilator-induced lung injury and may partly explain the reduction in mortality in severe ARDS [5].

Some case reports have sparked curiosity about using additional weights on the chest wall to improve lung compliance and thus ameliorate hypoxemia and respiratory mechanics [6, 7]. We report the effect of loading and unloading the chest wall during prone and supine position in a critically ill patient with COVID-19-related ARDS (C-ARDS).

A 65-year-old patient with class 2 obesity and no relevant comorbidities needed intubation and mechanical ventilation due to C-ARDS. No previous lung disease was reported in his medical history. His respiratory mechanics progressively worsened despite protective ventilation (5 mL/Kg PBW). PEEP was 12 cmH2O, respiratory rate 18/min, FiO2 0.7. Respiratory system elastance was > 50 cmH2O/L, and airway driving pressure was 22 cmH2O. It was necessary to institute ultra-protective lung ventilation (3.5 mL/Kg PBW) with extracorporeal carbon dioxide removal (ProLUNG®, ESTOR, Pero, Milano, Italy) at a blood flow of 400 ml/min and a fresh gas flow of 15 l/min oxygen. An esophageal balloon catheter (NutriVent®, SEDA, Mirandola, Modena, Italy) was positioned to investigate partitioned respiratory mechanics, and a pulmonary artery catheter was inserted.

Compression of the chest wall (over both sternum and ribs) with a sand bag was performed in the supine position, then the patient was placed in the prone position, and the sand bag was applied again. Table 1 shows the respiratory mechanics, gas exchange and hemodynamic parameters in the different conditions; Fig. 1 shows the lung elastance, alveolar dead space and oxygenation in the different conditions.

Table 1 Lung mechanics, ventilation and hemodynamic parameters during supine and prone position while loading and unloading the chest wall
Full size table
Fig. 1
figure1

Lung mechanics, alveolar dead space and oxygenation during supine and prone position while loading and unloading the chest wall

Full size image

In the supine position, external chest wall compression increased the chest wall elastance and reduced the lung elastance, ​​with a consequent reduction in the end-inspiratory transpulmonary pressure and therefore in the stress applied to the lung. Moreover, despite an unmodified minute ventilation, PaCO2 decreased, as did the alveolar dead space. Interestingly, a reversal of CO2 elimination percentages between natural and membrane lung was found. Third, venous admixture decreased, and oxygenation increased. In summary, chest wall loading likely led to a reduction in hyperinflation in the non-dependent lung region. Redistribution of ventilation and pulmonary blood flow is likely to account for some of the improved gas exchange during chest wall loading. Notably, the physiologic effects of external chest wall compression in the supine position were very similar to those of prone positioning. Our findings are similar to those reported by Carteaux et al. [8, 9]. Interestingly, application of chest wall loading in the prone position led to a further improvement of lung mechanics and oxygenation, confirming the recent finding of an improved compliance and lower plateau and driving pressure after sustained compressive force applied to the dorsum of the passive and prone patients with severe cARDS during controlled mechanical ventilation, which suggests end-tidal overinflation within the aerated part of the diseased lung despite the already compressed anterior chest wall of prone positioning [10].

It is possible that in the late phase of C-ARDS [11], the application of a weight (sand bag) on the chest in both the supine and prone position improves respiratory mechanics by reducing airway and transpulmonary driving pressures [8, 9, 12]. This maneuver is likely associated with a decrease in non-dependent lung region overdistension and an increase in dependent region recruitment of aerated lung units, leading to a more homogeneous tidal ventilation [8], adding a further element that improves lung protective ventilatory strategies [1].

Our case confirms the previous findings of chest wall loading in the supine position and adds evidence also to patients in the prone position. However, the possible role of chest loading is not generalizable to all ARDS patients, as some may not respond to this maneuver, and these initial observations require further investigation, even in little-explored areas such as the role of abdominal binding in responsive patients [10].

According to Gattinoni and Marini, we suggest that chest loading maneuver should be tested in all patients suffering from ARDS, applying it only in responders. Large further studies are needed to verify if this approach shares with prone positioning the same positive effect on patient outcome.

All data generated or analyzed during this study are included in this published article.

  1. 1.

    Marini JJ, Gattinoni L. Improving lung compliance by external compression of the chest wall. Crit Care. 2021;25:264.

    Article Google Scholar

  2. 2.

    Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574–81.

    CAS Article Google Scholar

  3. 3.

    Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    Article Google Scholar

  4. 4.

    Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188:1286–93.

    CAS Article Google Scholar

  5. 5.

    Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46:2385–96.

    Article Google Scholar

  6. 6.

    Bottino N, Panigada M, Chiumello D, et al. Effects of artificial changes in chest wall compliance on respiratory mechanics and gas exchange in patients with acute lung injury (ALI). Crit Care. 2000;4:117.

    Article Google Scholar

  7. 7.

    Samanta S, Samanta S, Soni KD. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome. Am J Emerg Med. 2014;32(489):e5-6.

    Google Scholar

  8. 8.

    Carteaux G, Tuffet S, Mekontso DA. Potential protective effects of continuous anterior chest compression in the acute respiratory distress syndrome: physiology of an illustrative case. Crit Care. 2021;25:187.

    Article Google Scholar

  9. 9.

    Kummer RL, Shapiro RS, Marini JJ, et al. Paradoxically improved respiratory compliance with abdominal compression in COVID-19 ARDS. Chest. 2021;160:1739–42.

    CAS Article Google Scholar

  10. 10.

    Elmufdi FS, Marini JJ. Dorsal push and abdominal binding improve respiratory compliance and driving pressure in proned coronavirus disease 2019 acute respiratory distress syndrome. Crit Care Explor. 2021;3:e0593.

    Article Google Scholar

  11. 11.

    Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–102.

    CAS Article Google Scholar

  12. 12.

    Rezoagli E, Bastia L, Grassi A, et al. Paradoxical effect of chest wall compression on respiratory system compliance: a multicenter case series of ARDS patients, with multimodal assessment. Chest. 2021;160:1335–9.

    Article Google Scholar

Download references

None.

Affiliations

  1. SC Anestesia E Rianimazione 1, Ospedale Santa Chiara, Trento, Italy

    Sergio Lassola, Sara Miori, Andrea Sanna, Rocco Pace & Sandra Magnoni

  2. Department of Anesthesiology, Critical Care Medicine and Emergency, SS, Annunziata Hospital, Chieti, Italy

    Luigi Vetrugno

  3. Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy

    Luigi Vetrugno

  4. SC Anestesia E Rianimazione II, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, Milan, Italy

    Michele Umbrello

Authors
  1. Sergio LassolaView author publications

    You can also search for this author in PubMed Google Scholar

  2. Sara MioriView author publications

    You can also search for this author in PubMed Google Scholar

  3. Andrea SannaView author publications

    You can also search for this author in PubMed Google Scholar

  4. Rocco PaceView author publications

    You can also search for this author in PubMed Google Scholar

  5. Sandra MagnoniView author publications

    You can also search for this author in PubMed Google Scholar

  6. Luigi VetrugnoView author publications

    You can also search for this author in PubMed Google Scholar

  7. Michele UmbrelloView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

SL, SM and MU designed the paper. MU, SL and SM analyzed and interpreted the data. AS, SM, LV participated in drafting and reviewing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sara Miori.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Lassola, S., Miori, S., Sanna, A. et al. Effect of chest wall loading during supine and prone position in a critically ill covid-19 patient: a new strategy for ARDS?. Crit Care 25, 442 (2021). https://doi.org/10.1186/s13054-021-03865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-021-03865-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • COVID-19 (C- ARDS)
  • Esophageal pressure
  • External chest wall compression
  • Lung protection
  • Mechanical ventilation
  • Prone position


中文翻译:

Covid-19危重患者仰卧位和俯卧位胸壁负荷的影响:ARDS的新策略?

亲爱的编辑,

我们饶有兴趣地阅读了 Gattinoni 和 Marini [1] 的评论。在他们的论文中,作者假设对严重 ARDS 患者的胸骨或腹部进行局部胸壁按压对呼吸力学有积极影响,这应该可以改善潮汐肺顺应性和跨肺压。

SARS-CoV-2 感染的全球大流行,以及随之而来的 2019 年冠状病毒病 (COVID-19),最令人担忧的并发症是急性低氧性呼吸衰竭,导致需要机械通气和入住 ICU 的患者激增 [2] ]。在这类患者中,有一小部分但很重要的部分,常规肺保护性通气不足以缓解低氧血症,应考虑其他策略。

俯卧位是改善严重 ARDS 患者氧合的既定策略,其应用与降低死亡率相关 [3]。将患者置于俯卧位可通过逆转垂直胸膜压力梯度导致更均匀的潮气量分布。此外,俯卧位降低了心脏和腹部对肺背尾区域的叠加压力 [4]。相反,肺灌注仍然优先分布到背肺区域,从而改善整体肺泡通气/灌注匹配。此外,从更宽的背侧胸壁悬挂的更大的肺组织块会影响整个肺的胸膜压力更均匀的分布,从而减少异常应变和压力的发展。

一些病例报告引发了对在胸壁上使用额外重量以改善肺顺应性从而改善低氧血症和呼吸力学的好奇 [6, 7]。我们报告了 COVID-19 相关 ARDS(C-ARDS)危重患者在俯卧位和仰卧位时胸壁负重的效果。

一名患有 2 级肥胖且无相关合并症的 65 岁患者因 C-ARDS 而需要插管和机械通气。在他的病史中没有报告先前的肺部疾病。尽管进行了保护性通气 (5 mL/Kg PBW),但他的呼吸力学逐渐恶化。PEEP 为 12 cmH 2 O,呼吸频率为 18/min,FiO 2 0.7。呼吸系统弹性 > 50 cmH 2 O/L,气道驱动压力为 22 cmH 2O. 有必要在 400 毫升/分钟的血流量和新鲜气体流量下进行超保护性肺通气 (3.5 毫升/公斤 PBW) 和体外二氧化碳去除 (ProLUNG®, ESTOR, Pero, Milano, Italy) 15 升/分钟的氧气。放置食管球囊导管(NutriVent®,SEDA,Mirandola,Modena,Italy)以研究分区呼吸力学,并插入肺动脉导管。

在仰卧位用沙袋压迫胸壁(胸骨和肋骨),然后将患者置于俯卧位,再次应用沙袋。表1显示了不同条件下的呼吸力学、气体交换和血流动力学参数;图 1 显示了不同条件下的肺弹性、肺泡死腔和氧合。

表 1 胸壁负重仰卧位和俯卧位肺力学、通气和血流动力学参数
全尺寸表
图。1
图1

胸壁装载和卸载时仰卧和俯卧位的肺力学、肺泡死腔和氧合

全尺寸图片

在仰卧位时,胸壁外按压增加了胸壁弹性并降低了肺弹性,从而降低了吸气末跨肺压,从而降低了施加到肺部的压力。此外,尽管每分钟通气量未改变,但 PaCO 2和肺泡死腔均下降。有趣的是,CO 2的逆转发现了自然肺和膜肺之间的消除百分比。第三,静脉混合液减少,氧合增加。总之,胸壁负荷可能导致非依赖性肺区域过度充气的减少。通气和肺血流的重新分配可能是胸壁负荷期间气体交换改善的部分原因。值得注意的是,仰卧位胸壁外按压的生理效应与俯卧位非常相似。我们的发现与 Carteaux 等人报道的结果相似。[8, 9]。有趣的是,在俯卧位应用胸壁负荷导致肺力学和氧合的进一步改善,

有可能在 C-ARDS [11] 的晚期,在仰卧位和俯卧位的胸部施加重物(沙袋)通过降低气道和跨肺驱动压力来改善呼吸力学 [8, 9, 12]。这种操作可能与非依赖性肺区域过度扩张的减少和充气肺单位的依赖性区域募集增加有关,从而导致更均匀的潮气通气 [8],增加了进一步改善肺保护性通气策略的因素 [1] ]。

我们的病例证实了先前在仰卧位胸壁负荷的发现,并为俯卧位患者增加了证据。然而,胸部负重的可能作用并非适用于所有 ARDS 患者,因为有些患者可能对这种操作没有反应,这些初步观察结果需要进一步调查,即使是在很少探索的领域,例如腹部束缚在有反应的患者中的作用。 10]。

根据 Gattinoni 和 Marini 的说法,我们建议应在所有 ARDS 患者中测试胸部负重操作,仅将其应用于反应者。需要大量的进一步研究来验证这种方法是否与俯卧位相同对患者结果产生相同的积极影响。

本研究期间生成或分析的所有数据都包含在这篇已发表的文章中。

  1. 1.

    Marini JJ、Gattinoni L. 通过外部压缩胸壁提高肺顺应性。暴击护理。2021;25:264。

    文章 谷歌学术

  2. 2.

    Grasselli G、Zangrillo A、Zanella A 等。入住意大利伦巴第大区 ICU 的 1591 名感染 SARS-CoV-2 的患者的基线特征和结果。杂志。2020;323:1574-81。

    CAS 文章 Google Scholar

  3. 3.

    Guérin C、Reignier J、Richard JC 等。严重急性呼吸窘迫综合征的俯卧位。N Engl J Med。2013;368:2159-68。

    文章 谷歌学术

  4. 4.

    加蒂诺尼 L、塔科内 P、卡莱索 E、马里尼 JJ。急性呼吸窘迫综合征的俯卧位。Am J Respir Crit Care Med。2013;188:1286-93。

    CAS 文章 Google Scholar

  5. 5.

    Guérin C、Albert RK、Beitler J 等。ARDS 患者的俯卧位:为什么、何时、如何以及为谁。重症监护医学。2020;46:2385-96。

    文章 谷歌学术

  6. 6.

    Bottino N、Panigada M、Chiumello D 等。人工改变胸壁顺应性对急性肺损伤(ALI)患者呼吸力学和气体交换的影响。暴击护理。2000;4:117。

    文章 谷歌学术

  7. 7.

    萨曼塔 S、萨曼塔 S、索尼 KD。仰卧胸外按压:急性呼吸窘迫综合征俯卧位通气的替代方法。是 J Emerg Med。2014;32(489):e5-6。

    谷歌学术

  8. 8.

    Carteaux G、Tuffet S、Mekontso DA。急性呼吸窘迫综合征中持续前胸按压的潜在保护作用:一个说明性病例的生理学。暴击护理。2021;25:187。

    文章 谷歌学术

  9. 9.

    Kummer RL、Shapiro RS、Marini JJ 等。矛盾的是,在 COVID-19 ARDS 中通过腹部压缩改善了呼吸顺应性。胸部。2021;160:1739-42。

    CAS 文章 Google Scholar

  10. 10.

    Elmufdi FS,马里尼 JJ。背推和腹部约束改善易感冠状病毒病 2019 急性呼吸窘迫综合征的呼吸顺应性和驱动压力。暴击护理探索。2021;3:e0593。

    文章 谷歌学术

  11. 11.

    Gattinoni L、Chiumello D、Caironi P 等。COVID-19 肺炎:针对不同表型的不同呼吸治疗?重症监护医学。2020;46:1099-102。

    CAS 文章 Google Scholar

  12. 12.

    Rezoagli E、Bastia L、Grassi A 等。胸壁按压对呼吸系统顺应性的反常影响:ARDS 患者的多中心病例系列,多模式评估。胸部。2021;160:1335-9。

    文章 谷歌学术

下载参考

没有任何。

隶属关系

  1. SC Anestesia E Rianimazione 1, Ospedale Santa Chiara, 特伦托, 意大利

    塞尔吉奥·拉索拉、萨拉·米奥里、安德里亚·桑娜、罗科·佩斯和桑德拉·马格诺尼

  2. 麻醉科,重症监护医学和急诊科,SS,Annunziata 医院,基耶蒂,意大利

    路易吉·维特鲁尼奥

  3. 意大利基耶蒂-佩斯卡拉大学医学、口腔和生物技术科学系

    路易吉·维特鲁尼奥

  4. SC Anestesia E Rianimazione II, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, 意大利米兰

    米歇尔·安布雷洛

作者
  1. Sergio Lassola查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  2. Sara Miori查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  3. Andrea Sanna查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  4. Rocco Pace查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  5. Sandra Magnoni查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  6. Luigi Vetrugno查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

  7. Michele Umbrello查看作者出版物

    您也可以在PubMed Google Scholar搜索此作者 

贡献

SL、SM 和 MU 设计了这篇论文。MU、SL 和 SM 分析并解释了数据。AS、SM、LV参与起草和审查。所有作者都阅读并批准了手稿的最终版本。

通讯作者

与 Sara Miori 的通信。

伦理批准和同意参与

不适用。

同意发表

不适用。

利益争夺

作者声明他们没有竞争利益。

出版商注

Springer Nature 对已发布地图和机构附属机构中的管辖权主张保持中立。

开放获取本文根据知识共享署名 4.0 国际许可协议获得许可,该许可允许以任何媒体或格式使用、共享、改编、分发和复制,只要您适当注明原作者和来源,提供链接到知识共享许可,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途未得到法律法规的允许或超出允许的用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

重印和许可

通过 CrossMark 验证货币和真实性

引用这篇文章

Lassola, S.、Miori, S.、Sanna, A.等。Covid-19危重患者仰卧位和俯卧位胸壁负荷的影响:ARDS的新策略?。暴击护理 25, 442 (2021)。https://doi.org/10.1186/s13054-021-03865-2

下载引文

  • 收到

  • 接受

  • 发表

  • DOI : https://doi.org/10.1186/s13054-021-03865-2

分享这篇文章

您与之共享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

关键词

  • COVID-19(C-ARDS)
  • 食道压力
  • 胸壁外按压
  • 肺保护
  • 机械通气
  • 俯卧位
更新日期:2021-12-20
down
wechat
bug