当前位置: X-MOL 学术Epidemiol. Infect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transmission pattern of shigellosis in Wuhan City, China: a modelling study
Epidemiology & Infection ( IF 4.2 ) Pub Date : 2021-11-02 , DOI: 10.1017/s0950268821002363
Zeyu Zhao 1 , Qi Chen 2 , Bin Zhao 3 , Qingqing Hu 4 , Jia Rui 1 , Yao Wang 1 , Yuanzhao Zhu 1 , Xingchun Liu 1 , Jingwen Xu 1 , Meng Yang 1 , Meijie Chu 1 , Yanhua Su 5 , Benhua Zhao 5 , Tianmu Chen 5
Affiliation  

The article aims to estimate and forecast the transmissibility of shigellosis and explore the association of meteorological factors with shigellosis. The mathematical model named Susceptible–Exposed–Symptomatic/Asymptomatic–Recovered–Water/Food (SEIARW) was used to explore the feature of shigellosis transmission based on the data of Wuhan City, China, from 2005 to 2017. The study applied effective reproduction number (Reff) to estimate the transmissibility. Daily meteorological data from 2008 to 2017 were used to determine Spearman's correlation with reported new cases and Reff. The SEIARW model fit the data well (χ2 = 0.00046, p > 0.999). The simulation results showed that the reservoir-to-person transmission of the shigellosis route has been interrupted. The Reff would be reduced to a transmission threshold of 1.00 (95% confidence interval (CI) 0.82–1.19) in 2035. Reducing the infectious period to 11.25 days would also decrease the value of Reff to 0.99. There was a significant correlation between new cases of shigellosis and atmospheric pressure, temperature, wind speed and sun hours per day. The correlation coefficients, although statistically significant, were very low (<0.3). In Wuhan, China, the main transmission pattern of shigellosis is person-to-person. Meteorological factors, especially daily atmospheric pressure and temperature, may influence the epidemic of shigellosis.
更新日期:2021-11-02
down
wechat
bug