当前位置: X-MOL 学术Basic Res. Cardiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation
Basic Research in Cardiology ( IF 9.5 ) Pub Date : 2021-12-06 , DOI: 10.1007/s00395-021-00904-5
Yuan Chang 1, 2 , Xiangjie Li 2, 3 , Qi Cheng 4, 5 , Yiqing Hu 2 , Xiao Chen 2 , Xiumeng Hua 2 , Xuexin Fan 2 , Menghao Tao 2 , Jiangping Song 2 , Shengshou Hu 1, 2
Affiliation  

Acute rejection (AR) is an important contributor to graft failure, which remains a leading cause of death after heart transplantation (HTX). The regulation of immune metabolism has become a new hotspot in the development of immunosuppressive drugs. In this study, Increased glucose metabolism of cardiac macrophages was found in patients with AR. To find new therapeutic targets of immune metabolism regulation for AR, CD45+ immune cells extracted from murine isografts, allografts, and untransplanted donor hearts were explored by single-cell RNA sequencing. Total 20 immune cell subtypes were identified among 46,040 cells. The function of immune cells in AR were illustrated simultaneously. Cardiac resident macrophages were substantially replaced by monocytes and proinflammatory macrophages during AR. Monocytes/macrophages in AR allograft were more active in antigen presentation and inflammatory recruitment ability, and glycolysis. Based on transcription factor regulation analysis, we found that the increase of glycolysis in monocytes/macrophages was mainly regulated by HIF1A. Inhibition of HIF1A could alleviate inflammatory cells infiltration in AR. To find out the effect of HIF1A on AR, CD45+ immune cells extracted from allografts after HIF1A inhibitor treatment were explored by single-cell RNA sequencing. HIF1A inhibitor could reduce the antigen presenting ability and pro-inflammatory ability of macrophages, and reduce the infiltration of Cd4+ and Cd8a+ T cells in AR. The expression of Hif1α in AR monocytes/macrophages was regulated by pyruvate kinase 2. Higher expression of HIF1A in macrophages was also detected in human hearts with AR. These indicated HIF1A may serve as a potential target for attenuating AR.

更新日期:2021-12-07
down
wechat
bug