当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Competition of Superconductivity and Charge Density Wave in Selective OxidizedCsV3Sb5Thin Flakes
Physical Review Letters ( IF 8.6 ) Pub Date : 2021-12-01 , DOI: 10.1103/physrevlett.127.237001
Yanpeng Song 1 , Tianping Ying 1, 2 , Xu Chen 1 , Xu Han 1 , Xianxin Wu 3, 4 , Andreas P Schnyder 3 , Yuan Huang 1 , Jian-Gang Guo 1, 5 , Xiaolong Chen 1, 5, 6
Affiliation  

The recently discovered layered kagome metals AV3Sb5 (A=K, Rb, and Cs) with vanadium kagome networks provide a novel platform to explore correlated quantum states intertwined with topological band structures. Here we report the prominent effect of hole doping on both superconductivity and charge density wave (CDW) order, achieved by selective oxidation of exfoliated thin flakes. A superconducting dome is revealed as a function of the effective doping content. The superconducting transition temperature (Tc) and upper critical field in thin flakes are significantly enhanced compared with the bulk, which are accompanied by the suppression of CDW. Our detailed analyses establish the pivotal role of van Hove singularities in promoting correlated quantum orders in these kagome metals. Our experiments not only demonstrate the intriguing nature of superconducting and CDW orders, but also provide a novel route to tune the carrier concentration through both selective oxidation and electric gating. This establishes CsV3Sb5 as a tunable 2D platform for the further exploration of topology and correlation among 3d electrons in kagome lattices.

中文翻译:

选择性氧化CsV3Sb5薄片中超导性和电荷密度波的竞争

最近发现的层状kagome金属 一个35 (一个=、Rb 和 Cs) 与钒 Kagome 网络提供了一个新的平台来探索与拓扑能带结构交织的相关量子态。在这里,我们报告了空穴掺杂对超导性和电荷密度波 (CDW) 阶的显着影响,这是通过剥落薄片的选择性氧化实现的。超导圆顶显示为有效掺杂含量的函数。超导转变温度(C) 和薄片中的上临界场与块体相比显着增强,同时伴随着 CDW 的抑制。我们的详细分析确定了范霍夫奇点在促进这些 Kagome 金属中相关量子阶数方面的关键作用。我们的实验不仅证明了超导和 CDW 级的有趣性质,而且还提供了一种通过选择性氧化和电门控来调节载流子浓度的新途径。这确立了电压35 作为进一步探索拓扑和相关性的可调二维平台 3d Kagome 晶格中的电子。
更新日期:2021-12-01
down
wechat
bug