当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In pursuit of accurate interlayer potentials for twisted bilayer graphynes
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2021-11-19 , DOI: 10.1039/d1cp03637h
Ajay Melekamburath 1 , Anto James 1 , Megha Rajeevan 1 , Chris John 1 , Rotti Srinivasamurthy Swathi 1
Affiliation  

Recent explorations of twist in bilayer graphene and the discovery of superconducting phases at certain magic angles have laid the groundwork for a new branch in materials science called twistronics. However, theoretical studies on twisted layered materials are impeded due to the computational expense associated with first-principles calculations. Empirical force field approaches that include anisotropic terms to describe interlayer interactions have come to the fore as excellent alternatives to deal with such a stumbling block. Taking a cue from these formulations, herein, we describe our pursuit of capturing the interlayer interactions in bilayer graphynes with atomistic empirical potentials. The choice of the potentials, namely the improved Lennard-Jones potential and Hod's interlayer potential, is motivated by the objective of bringing out the role of anisotropy explicitly. Empirical parameters for both the potentials are calibrated against dispersion-corrected DFT calculations that are performed to incorporate the stacking, sliding and twisting features of the bilayer configurations. Although the isotropic improved Lennard-Jones potential is able to describe the interlayer stacking of graphynes, it is inadequate to account for the interlayer twist properties. The anisotropic Hod's interlayer potential portrays the interlayer twisting energy profiles of the benchmark DFT calculations with a reasonable accuracy. Our potential formulations can bestow impetus to the research on the homo- and hetero-bilayer structures of graphynes and other two-dimensional materials.

中文翻译:

为扭曲的双层石墨烯寻求准确的层间电位

最近对双层石墨烯中扭曲的探索以及在某些魔角下超导相的发现为材料科学中称为扭曲电子学的新分支奠定了基础。然而,由于与第一性原理计算相关的计算费用,对扭曲层状材料的理论研究受到阻碍。包括各向异性术语来描述层间相互作用的经验力场方法已经成为处理这种绊脚石的绝佳替代方案。从这些公式中得到启发,我们在本文中描述了我们对捕捉具有原子经验电位的双层石墨烯中的层间相互作用的追求。势的选择,即改进的Lennard-Jones势和Hod的层间势,其动机是明确显示各向异性的作用。两种电位的经验参数都根据色散校正 DFT 计算进行校准,这些计算是为了结合双层配置的堆叠、滑动和扭曲特征而执行的。尽管各向同性改进的 Lennard-Jones 势能够描述石墨烯的层间堆叠,但不足以解释层间扭曲特性。各向异性 Hod 的层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。两种电位的经验参数都根据色散校正 DFT 计算进行校准,这些计算是为了结合双层配置的堆叠、滑动和扭曲特征而执行的。尽管各向同性改进的 Lennard-Jones 势能够描述石墨烯的层间堆叠,但不足以解释层间扭曲特性。各向异性 Hod 的层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。两种电位的经验参数都根据色散校正 DFT 计算进行校准,这些计算是为了结合双层配置的堆叠、滑动和扭曲特征而执行的。尽管各向同性改进的 Lennard-Jones 势能够描述石墨烯的层间堆叠,但不足以解释层间扭曲特性。各向异性 Hod 的层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。双层结构的滑动和扭曲特征。尽管各向同性改进的 Lennard-Jones 势能够描述石墨烯的层间堆叠,但不足以解释层间扭曲特性。各向异性 Hod 的层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。双层结构的滑动和扭曲特征。尽管各向同性改进的 Lennard-Jones 势能够描述石墨烯的层间堆叠,但不足以解释层间扭曲特性。各向异性 Hod 的层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。s 层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。s 层间电位以合理的精度描绘了基准 DFT 计算的层间扭曲能量分布。我们的潜在配方可以推动石墨烯和其他二维材料的同质和异质双层结构的研究。
更新日期:2021-12-01
down
wechat
bug