当前位置: X-MOL 学术J. Opt. Soc. Amer. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical signatures of the coupled spin-mechanics of a levitated magnetic microparticle
Journal of the Optical Society of America B ( IF 1.9 ) Pub Date : 2021-11-29 , DOI: 10.1364/josab.440562
Vanessa Wachter 1, 2 , Victor A. S. V. Bittencourt 1 , Shangran Xie 1, 3 , Sanchar Sharma 1 , Nicolas Joly 1, 2 , Philip St.J. Russell 1 , Florian Marquardt 1, 2 , Silvia Viola Kusminskiy 1, 2
Affiliation  

We propose a platform that combines the fields of cavity optomagnonics and levitated optomechanics to control and probe the coupled spin-mechanics of magnetic dielectric particles. We theoretically study the dynamics of a levitated Faraday-active dielectric microsphere serving as an optomagnonic cavity, placed in an external magnetic field and driven by an external laser. We find that the optically driven magnetization dynamics induces angular oscillations of the particle with low associated damping. Further, we show that the magnetization and angular motion dynamics can be probed via the power spectrum of the outgoing light. Namely, the characteristic frequencies attributed to the angular oscillations and the spin dynamics are imprinted in the light spectrum by two main resonance peaks. Additionally, we demonstrate that a ferromagnetic resonance setup with an oscillatory perpendicular magnetic field can enhance the resonance peak corresponding to the spin oscillations and induce fast rotations of the particle around its anisotropy axis.

中文翻译:

悬浮磁性微粒耦合自旋力学的光学特征

我们提出了一个平台,该平台结合了腔光机学和悬浮光力学领域,以控制和探测磁性介电粒子的耦合自旋力学。我们从理论上研究了悬浮法拉第活性介电微球的动力学,该微球用作光感腔,放置在外部磁场中并由外部激光驱动。我们发现光学驱动的磁化动力学会引起粒子的角振荡,并且相关阻尼较低。此外,我们表明可以通过出射光的功率谱来探测磁化和角运动动力学。即,归因于角振荡和自旋动力学的特征频率通过两个主要共振峰印刻在光谱中。此外,
更新日期:2021-12-02
down
wechat
bug