当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design, fabrication and implementation of a high-performance compliant nanopositioner via 3D printing with continuous fiber-reinforced composite
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2021-11-16 , DOI: 10.1088/1361-6439/ac331b
Mengjia Cui 1 , Erwei Shang 2 , Shouqian Jiang 2 , Yu Liu 2 , Zhen Zhang 1, 3
Affiliation  

Nanopositioning systems have been widely applied in scientific and emerging industrial applications. With simplicity in design and operation, flexure bearings with spatial constraints and voice coil based nano-actuators are considered in designing compliant compact nanopositioning systems. To achieve nano-metric positioning quality, monolithic fabrication of the positioner is preferred, which calls for 3D printing fabrication. However, conventional plastic material-based 3D printing suffers from low mechanical performances, and it is challenging to monolithically fabricate 3D compliant mechanisms with high mechanical performances. Here, we study the fabrication of continuous carbon fiber reinforced composites by 3D printing of the double parallelogram flexure beam structures for spatial constrained nanopositioner with enhanced vertical stiffness. Also, with the consideration of the beam structure design, the process parameters for embedding the carbon fibers are optimized to enhance the beam strengths. Experimental results demonstrate a significant performance improvement with the composite based nanopositioner in both stiffness and natural frequency, and its positioning resolution of 30 nm is achieved. The result of this study will serve as the building block to apply advanced 3D printing of composite structure for precision engineering in the presence of more complex spatial structures.



中文翻译:

通过具有连续纤维增强复合材料的 3D 打印设计、制造和实现高性能兼容纳米定位器

纳米定位系统已广泛应用于科学和新兴工业应用。由于设计和操作简单,在设计符合要求的紧凑型纳米定位系统时考虑了具有空间约束和基于音圈的纳米致动器的挠性轴承。为了实现纳米级定位质量,定位器的整体制造是首选,这需要 3D 打印制造。然而,传统的基于塑料材料的 3D 打印机械性能低,并且单片制造具有高机械性能的 3D 兼容机构具有挑战性。在这里,我们研究了通过 3D 打印双平行四边形挠性梁结构来制造连续碳纤维增强复合材料,用于具有增强垂直刚度的空间受限纳米定位器。同时,考虑到横梁结构设计,优化了嵌入碳纤维的工艺参数,以提高横梁强度。实验结果表明,基于复合材料的纳米定位器在刚度和固有频率方面都有显着的性能改进,并且实现了 30 nm 的定位分辨率。这项研究的结果将作为基础,在存在更复杂的空间结构的情况下,将复合结构的先进 3D 打印应用于精密工程。实验结果表明,基于复合材料的纳米定位器在刚度和固有频率方面都有显着的性能改进,并且实现了 30 nm 的定位分辨率。这项研究的结果将作为基础,在存在更复杂的空间结构的情况下,将复合结构的先进 3D 打印应用于精密工程。实验结果表明,基于复合材料的纳米定位器在刚度和固有频率方面都有显着的性能改进,并且实现了 30 nm 的定位分辨率。这项研究的结果将作为基础,在存在更复杂的空间结构的情况下,将复合结构的先进 3D 打印应用于精密工程。

更新日期:2021-11-16
down
wechat
bug