当前位置: X-MOL 学术Limnol. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of particle dynamics in processing of terrestrial nitrogen and phosphorus in the estuarine mixing zone
Limnology and Oceanography ( IF 3.8 ) Pub Date : 2021-11-26 , DOI: 10.1002/lno.11961
Eero Asmala 1, 2 , Joonas J Virtasalo 3 , Matias Scheinin 4, 5 , Sara Newton 6 , Tom Jilbert 1, 7
Affiliation  

Multiple biogeochemical processes in estuaries modulate the flux of nutrients from land to sea, thus contributing to the coastal filter. The role of particle dynamics in regulating the fate of terrestrial nutrients in estuaries is poorly constrained. To address this issue, we resolved the particle size distribution of suspended material, and quantified size-fractionated particulate nitrogen (PN) and phosphorus (PP), in a stratified mesotrophic estuary (Pojoviken, Finland). We also carried out a mixing experiment where the effects of salt-induced flocculation on particle size distribution and concentrations of PN and PP were examined. The experimental results showed that salt-induced flocculation at already very low salinities increases the total particle concentration and mean particle size, indicating transfer of dissolved material into particulates. Correspondingly, a significant increase in PP and particulate iron (Fe) was observed in the experiment results, suggesting coupled flocculation of P-containing organic matter (OM) and ferrihydrite. Particle dynamics in the field data were dominated by processes occurring downstream of the flocculation zone. Primary production created a downward flux of autochthonous OM particles, promoting passive aggregation by random collisions with terrestrial material in the water column. Maximum particle concentrations were observed at and below the halocline. The highest PN and PP concentrations were observed in the subhalocline layer, 3.5 and 0.14 μmol L−1, respectively. Molar ratios of N:P in this material were >40, consistent with typical marine snow in the early stages of microbial processing. Our study provides a mechanistic overview of the biogeochemical drivers of particulate nutrient dynamics in stratified estuarine environments.

中文翻译:

颗粒动力学在河口混合区陆地氮磷处理中的作用

河口的多种生物地球化学过程调节了从陆地到海洋的营养物质的流动,从而有助于海岸过滤。粒子动力学在调节河口陆地营养物质命运中的作用受到很少的限制。为了解决这个问题,我们解决了分层中营养河口(芬兰波约维肯)中悬浮物质的粒度分布,并量化了粒度分级的颗粒氮 (PN) 和磷 (PP)。我们还进行了混合实验,研究了盐诱导的絮凝对粒径分布和 PN 和 PP 浓度的影响。实验结果表明,在已经非常低的盐度下盐诱导的絮凝增加了总颗粒浓度和平均粒径,表明溶解的物质转移到颗粒中。相应地,在实验结果中观察到PP和颗粒铁(Fe)的显着增加,表明含P有机物(OM)和水铁矿的耦合絮凝。现场数据中的粒子动力学主要由絮凝区下游发生的过程控制。初级生产产生了本土 OM 粒子的向下流动,通过与水柱中的陆地物质的随机碰撞促进被动聚集。在卤代线处和以下观察到最大颗粒浓度。在亚卤化物层中观察到最高的 PN 和 PP 浓度,分别为 3.5 和 0.14 μmol·L 表明含磷有机物(OM)和水铁矿的耦合絮凝。现场数据中的粒子动力学主要由絮凝区下游发生的过程控制。初级生产产生了本土 OM 粒子的向下流动,通过与水柱中的陆地物质的随机碰撞促进被动聚集。在卤代线处和以下观察到最大颗粒浓度。在亚卤化物层中观察到最高的 PN 和 PP 浓度,分别为 3.5 和 0.14 μmol·L 表明含磷有机物(OM)和水铁矿的耦合絮凝。现场数据中的粒子动力学主要由絮凝区下游发生的过程控制。初级生产产生了本土 OM 粒子的向下流动,通过与水柱中的陆地物质的随机碰撞促进被动聚集。在卤代线处和以下观察到最大颗粒浓度。在亚卤化物层中观察到最高的 PN 和 PP 浓度,分别为 3.5 和 0.14 μmol·L 通过与水柱中的陆地物质的随机碰撞来促进被动聚集。在卤代线处和以下观察到最大颗粒浓度。在亚卤化物层中观察到最高的 PN 和 PP 浓度,分别为 3.5 和 0.14 μmol·L 通过与水柱中的陆地物质的随机碰撞来促进被动聚集。在卤代线处和以下观察到最大颗粒浓度。在亚卤化物层中观察到最高的 PN 和 PP 浓度,分别为 3.5 和 0.14 μmol·L-1,分别。该材料中 N:P 的摩尔比 > 40,与微生物加工早期阶段的典型海洋雪一致。我们的研究提供了在分层河口环境中颗粒养分动态的生物地球化学驱动因素的机制概述。
更新日期:2022-01-17
down
wechat
bug