当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics investigation on isobaric heat capacity of working fluid in supercritical CO2 Brayton cycle: Effect of trace gas
Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2021-11-27 , DOI: 10.1016/j.jcou.2021.101790
Juan Xue 1 , Xianhua Nie 1 , Zhenyu Du 1 , Hong-Rui Li 1 , Li Zhao 1 , Yu Zhu 1 , Jiajun Wang 1
Affiliation  

Supercritical CO2 Brayton cycles have become a research hotspot in high-efficiency power production. Adoption of other gas into CO2 is proved to be an effective way to improve the performance of supercritical CO2 cycle. In practice, it is inevitable to mix impurity gas into CO2. The additive gas would have significant effects on isobaric heat capacity of CO2 system. However, the lack of isobaric heat capacity of CO2 mixture gas over supercritical regions of CO2 poses a challenge in the design and optimization of supercritical CO2 Brayton cycle.

In this work, N2 and Xe, whose mole fraction ranges from 1% to 50 %, is considered as an additive gas in CO2. The isobaric heat capacity of pure CO2, CO2/Xe and CO2/N2 binary mixture is calculated via molecular dynamics simulation. Compared to the commonly utilized database REFPROP, it is found that molecular dynamics simulation exhibits comparable and acceptable performance in prediction of the isobaric heat capacity of the mixed CO2 system. The absolute average deviate of isobaric heat capacity of pure CO2 and CO2/N2 binary mixtures is less than 1% and 1.3 % compared to the REFPROP database, respectively. Then, the effect of the Xe and N2 on the isobaric heat capacity is discussed. The results demonstrated that the isobaric heat capacity would decrease continuously when CO2 is mixed with Xe and N2. The prediction models and data put forth in this paper offer great values for practical application system involving S-CO2 Brayton cycle.



中文翻译:

超临界CO2布雷顿循环工质等压热容的分子动力学研究:微量气体的影响

超临界CO 2布雷顿循环已成为高效发电的研究热点。事实证明,采用其他气体进入CO 2是提高超临界CO 2循环性能的有效途径。在实践中,不可避免地会在CO 2 中混入杂质气体。添加气体会对CO 2系统的等压热容产生显着影响。然而,由于缺乏的CO的同量异位的热容量2在CO的超临界区域混合气体2的姿势在超临界CO的设计和优化一挑战2布雷顿循环。

在这项工作中,N 2和Xe 的摩尔分数范围从1% 到50%,被认为是CO 2 中的一种添加气体。通过分子动力学模拟计算纯CO 2、CO 2 /Xe 和CO 2 /N 2二元混合物的等压热容。与常用的数据库REFPROP相比,发现分子动力学模拟在预测混合CO 2系统的等压热容方面表现出可比和可接受的性能。纯CO 2和CO 2 /N 2的等压热容绝对平均偏差与 REFPROP 数据库相比,二元混合物分别小于 1% 和 1.3%。然后,讨论了 Xe 和 N 2对等压热容的影响。结果表明,当CO 2与Xe 和N 2混合时,等压热容会不断降低。本文提出的预测模型和数据对涉及S-CO2布雷顿循环的实际应用系统具有重要价值。

更新日期:2021-11-27
down
wechat
bug